
Herdable Systems Over Signed, Directed Graphs

Sebastian F. Ruf1, Magnus Egerstedt1, and Jeff S. Shamma2

Abstract—In this paper, we consider the notion of herdability,
a set-based reachability condition, which asks whether the state
of a system can be controlled to be element-wise larger than a
non-negative threshold. The basic theory of herdable systems is
presented and a necessary and sufficient condition for complete
herdability is presented. This paper then considers the impact
of the underlying graph structure of a linear system on the
herdability of the system, for the case where the graph is
represented as signed and directed. By classifying nodes based
on the length and sign of walks from an input, we find a class
of completely herdable systems as well as provide a complete
characterization of nodes that can be herded in systems with
an underlying graph that is a directed out-branching rooted at
a single input. It is shown that for these out-branching systems,
it is always possible to herd at least as many nodes as it is
possible to control.

I. Introduction

Controllability is a fundamental property of a dynamical
system, and has been an area of study since the work of
Kalman et. al in the 1960s [1]. However there are certainly
cases where a system need not be completely controllable
to achieve desirable system outcomes. Often these systems
are studied in the context of stabilizability [2]. This paper
considers these systems in a different light by considering
the reachability of a specific set rather than the whole state
space as in complete controllability. As an example, consider
the case where the state of a dynamical system represents the
percentage of a given community that will vote for a political
candidate and the control input represents advertising. Here
an advertising campaign is successful if the state can be
driven high enough for the candidate to win, regardless of
whether communities can be made to vote at any specific
percentage as would be required by complete controllability.

In order to study systems that are not completely control-
lable but for which certain desirable control outcomes are
still achievable, this paper introduces a set-based reachability
condition known as herdability, which considers whether the
components of the state can be driven above a non-negative
threshold. This target set describes desired behavior in social
and biological sciences where many systems act based on
thresholds, for example collective social behavior [3] and
the firing of a neuron [4]. More formally, a continuous time,
linear system,

ẋ = Ax +Bu (1)
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where A ∈ Rn×n and B ∈ Rn×m, is completely herdable if
there exists a control input that makes the state enter the set
Hd = {x ∈ Rn : xi ≥ d} for all d ≥ 0 and where xi is the i-
th element of x. In the case where a system is not completely
herdable, one can consider which elements of the state, x,
can be made to reach Hd, which will be referred to as subset
herdability. Returning to the example of voting in an election,
where xi now represents the percentage of community i that
will vote for a candidate, one can see that to win the election
requires reaching the set H.5 = {x ∈ Rn : (x)i ≥ .5}.

This paper considers the herdability of linear systems
based on the structure of the underlying interaction graph,
which encodes information about how states and inputs
interact with each other, based on the system matrices A
and B. The relationship between a graph and a dynamical
system has been previously considered using two primary
approaches. The first approach takes classes of dynamical
systems and maps them to a graph to discuss properties
of all systems that share the same graph structure. This
approach is known as structural controllability, [5]–[7] and
its extension, strong structural controllability [8]. In structural
controllability, a dynamical system is represented by a graph
in which each edge of the graph is assigned a weight in
R. A system is structurally controllable (strongly structurally
controllable) if and only if it is controllable for almost all
(all) weights that are assigned to the edges, which is a
property that can be verified directly from the structure of
the underlying graph.

The second approach goes from a specific graph structure
to a system dynamic. In many cases, the system dynamic is
consensus dynamics, which are used in robotic and social
systems [9], [10]. The controllability of these consensus
system has been shown to be directly related to the structure
of the graph, either in the ability to identify certain structures
[11]–[16] or because the underlying graph is assumed to be
of a certain form [17]–[19].

This paper shares the approach of structural controllability
in that the control properties of classes of systems are con-
sidered based on their graph structure; however in contrast
to structural controllability, the graph structures considered
here are assumed to be signed graphs. Specifically this paper
represents the interaction structure as a signed, directed graph
as it often the case that the sign of the interaction structure
is sufficient information to determine whether a system is
herdable or not. An example is shown in Figure 1. Signed
graphs are used in the social networks context to represent
systems in which agents are both friends and enemies [20]. In
this light, the central problem of the paper can be phrased in
a social networks context as follows: how does the grouping



of friends and enemies in the network relate to the ability to
convince agents in the system to hold an opinion in Hd?
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Fig. 1: 1a shows a graph structure which represents a set
of systems that are completely herdable, while the systems
represented by 1b are not.

The rest of the paper is organized as follows: Section II
introduces the basic theory of herdable system. In Section III
a graph theoretic characterization of the interaction struc-
ture of a linear system is presented. Section IV considers
a necessary condition for complete herdability based on
the underlying graph structure. Section V presents a class
of completely herdable systems and Section VI considers
selecting a herdable subset for graphs that are represented by
a directed out-branching. The paper concludes in Section VII.

Notation:
For a vector k ∈ Rn, ki refers to the i-th element of k.

For a matrix K ∈ Rn×m, (K)i,: refers to the i-th row of K,
(K):,j refers to the j-th column of K and (K)i,j to the i, j-
th element of K. The cardinality of the set S is expressed
as |S|. Let sgn(·) denote the sign function which is defined
as

sgn(x) =

 −1 for x < 0,
0 for x = 0,
1 for x > 0.

Let 0n ∈ Rn be a vector of zeros, 1n ∈ Rn be a vector of
ones, and 0n×m ∈ Rn×m be a matrix of zeros. Logical AND
is denoted by ∧ and ∨ denotes logical OR and Y denotes
logical EXCLUSIVE OR.

II. Characterizing Herdability

In this section, the basic theory of the herdability of
continuous time, linear dynamical systems is presented as
well as a characterization of herdability based on the system
controllability matrix. Of course before characterizing herd-
ability, the following definitions of herdability are required.

Definition 1: The state i of a linear system is herdable if
∀x(0) ∈ Rn and h ≥ 0, there exists a finite time tf and an
input u(t), t ∈ [0, tf ] such that x(tf )i ≥ h under control
input u(t).
Definition 2: A set of states, X ⊆ {1, 2, . . . , n}, is herd-

able if each individual state in X is herdable together, i.e. if
∀x(0) ∈ Rn and h ≥ 0, there exists a finite time tf and an
input u(t), t ∈ [0, tf ] such that x(tf )i ≥ h,∀i ∈ X under
control input u(t).
Definition 3: A linear system is completely herdable if all

states in the system are herdable together.
To translate the definition of herdability to a necessary
and sufficient condition for herdability requires some basic

concepts from the study of linear systems, specifically the
reachable subspace and the controllability matrix.

Define the reachable subspace R[0, t] as

R[0, t] =

{
x1 ∈ Rn : ∃u(·),x1 =

∫ t

0

eA(t−τ)Bu(τ)dτ

}
.

The controllability matrix C of a linear system is

C =
[
B,AB,A2B, . . . , An−1B

]
It is possible to characterize the herdability of a system

based on its controllability matrix. Recall the following from
[2] (though any introductory linear systems text will do):
Lemma 1: Theorem 11.5 from [2]

R[0, t] = range(C).
With Lemma 1 it is possible to prove the following

Theorem, which gives a necessary and sufficient condition
for the herdability of a subset of states.

Theorem 1: A set of states X ⊆ {1, 2, . . . , n} is herdable
if and only if there is exists a vector k ∈ range(C) that
satisfies ki > 0 for all i ∈ X .

Proof: Define the set K to be the set that contains the
positive elements of k, K = {p | p > 0 ∧ ∃ i such that ki =
p}.
(k ∈ range(C) ⇒ X is herdable) Consider the problem

of controlling all states in the set X to be greater than
some lower threshold h ≥ 0 from an initial condition x(0).
Suppose there is a k ∈ range(C), that satisfies ki > 0 if
i ∈ X . As k ∈ range(C), ∃ααα such that

Cααα = k.

If
γ >

maxj (h1n − eAtx(0))j
minK

and v = γααα then for all i ∈ X it holds that

(Cv)i > (h1n − eAtx(0))i.

As the range of C is the same as the reachable subspace,
∃u(·) such that for all i ∈ X

(eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ)i > h

then all states in X can be made larger that h and as h is
arbitrary the subset of states X is herdable.

(X is herdable⇒ k ∈ range(C)) As the set of state nodes
X is herdable, each element of X can be made larger than
some h∗ > 0 from any initial condition. Consider the initial
condition x(0) = 0n. Then by the herdability of the set X
there exists a vector k∗ that satisfies k∗i > h∗ ∀i ∈ X and
an input u(·) such that∫ t

0

eA(t−τ)Bu(τ)dτ = k∗

Then k∗i > 0 ∀i ∈ X by the definition of h∗. By the
definition of R[0, t], k∗ ∈ R[0, t] and consequently k∗ ∈
range(C) by Lemma 1.

Corollary 1: A linear system is completely herdable if
and only if there exists an element-wise positive vector
k ∈ range(C).



III. Characterizing Dynamical Systems via Graphs
The dynamical system in Equation (1) can be represented

by three graphs; each of which contains different levels of
information about the interactions between the states and
inputs. The first is an unweighted directed graph G = (V, E),
where V is the vertex (or node) set and E is the edge set. This
graph is commonly used in the study of structural controlla-
bility [5] and will not be explored further in this paper. The
second graph is a signed graph Gs = (V, E , s(·)) where s(·)
accepts an edge and returns a label in {+1,−1}, which is
the sign of the edge. This signed graph represents a class of
systems whose edge weights have the same sign pattern. The
third graph is a weighted graph Gw = (V, E , w(·)) where
w(·) accepts an edge and returns a weight in R. The weighted
graph is the representation of a single system.

As will be seen later, the weighted graph Gw can be
directly related to the controllability grammian and there-
fore the controllability properties of the system. This paper
focuses on the interplay between Gs and Gw, in that the
presented structural results are cases where the results for
the herdability of a system based on the weighted Gw can
be extended to all signed graphs with the same sign structure
Gs regardless of the weights of the edges in Gw, a notion
similar to strong structural controllability [8].

The formal definition of the graphs follows. The set of
vertices satisfies V = Vx ∪ Vu, Vx ∩ Vu = ∅, where Vx =
{vx1, vx2, . . . , vxn} is a set of vertices representing the states
of the system and Vu = {vu1, vu2, . . . , vum} is a set of nodes
representing the inputs to the system. An arbitrary element of
V will be referred to by vi for some index i, as will arbitrary
elements vxi ∈ Vx and vui ∈ Vu. The state i will now be
interchangeably referred to by the node vxi as will the input
j and the node vuj .
The edge set satisfies E = Ex ∪ Eu where the edges in

Ex represent interactions between states of the system, while
Eu represents interactions between the inputs and the states.
Denote the directed edge from vi to vj as (vi, vj). Then
(vxi, vxj) ∈ Ex ⇔ A(j, i) 6= 0 and (vui, vxj) ∈ Eu ⇔
B(j, i) 6= 0. An arbitrary element of E will be referred to by
ei for some i. By partitioning the node and edges sets, it is
possible to define the state subgraph Gx = (Vx, Ex), which
captures only interactions between states as well as the input
subgraph Gu = (V, Eu) which captures interactions from the
inputs to the states. Note that the input nodes do not interact
with each other nor is it possible to have an edge (vxi, vuj).
When considering the signed graph Gs, s((vxi, vxj)) =

sgn(A(j, i)) and s((vui, vxj)) = sgn(B(j, i)). Similarly for
Gw, w((vxi, vxj)) = A(j, i) and w((vui, vxj)) = B(j, i).
As an example, consider the system

ẋ =

−1 0 0
5 0 2
4 −3 0

+

0 −2
2 0
0 3

u (2)

which is translated into Gs and Gw in Figure 2.
To describe these graphs requires a number of basic

definitions from graph theory. Unless otherwise noted, the
provided definitions follow [21]. A walk from v0 to vp,
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Fig. 2: The graphs of the system in in Equation (2). 2a: Gs
the signed graph. 2b: Gw the weighted graph.

π(v0, vp), is any alternating sequence of nodes and edges
π(v0, vp) = v0, e1, v1, e2, v2 . . . , vp−1, ep, vp such that vi ∈
V ∀i and ei = (vi−1, vi) ∈ E . The set of walks from v0 to
vp is θ(v0, vp). A node vj is reachable from vi, which will
be written as vi → vj , if θ(vi, vj) 6= ∅1. The length of a
walk, len(π), is equal to the number of edges in π.
A walk has an associated sign which follows

s(π) =
∏
ei∈π

s(ei).

In this paper, a walk also has an associated weight:

w(π) =
∏
ei∈π

w(ei).

This is distinct from the weight of a walk as it is
treated in many applications, such as shortest path al-
gorithms, which consider w(π) =

∑
ei∈π w(ei) [22].

Referring back to the example in Figure 2, the walk
π(u1, x3) = u1, (u1, x2), x2, (x2, x3), x3 is of length 2 and
has s(π(u1, x3)) = −1 and w(π(u1, x3)) = −6.
To begin classifying the system in Equation (1) based on

the signed graph Gs, we define two basic types of sets.
Let N j

d be the set of nodes reachable from vuj via at least
one negative walk of length d. Similarly Pjd is the set of
nodes reachable from vuj through at least one positive walk
of length d. If there is only one input to the system, the
superscript will be dropped to refer to Nd and Pd instead of
N 1
d and P1

d . Figure 3 shows an example of these sets.
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Fig. 3: An example of Nd and Pd: N1 = {x1}, N2 =
{x3, x4}, P1 = {x2}, P2 = {x4}

As will be seen, the sets Pjd and N j
d often provide suffi-

cient information to determine the herdability of a system. To
show this requires classifying the structure of the weighted

1Reachability is discussed within both graph theory and control theory.
This paper will use the term reachable in both senses, with clarification only
if it is uncertain which notion of reachability is considered.



graph Gw. Consider the total weight of positively signed
walks from input vuj to node vxi with length d,

ρ+j→i,d =
∑

π∈θ+d (vuj ,vxi)

w(π),

where θ+d (vuj , vxi) is the set of positive walks of length d
from vuj to vxi. From the definition of Pjd , it holds that
ρ+j→i,d > 0 if vxi ∈ Pjd and 0 else. Similarly the total weight
of negatively signed walks from input vuj to node vxi with
length d is

ρ−j→i,d =
∑

π∈θ−d (vuj ,vxi)

w(π),

where θ−d (vuj , vxi) is the set of negative walks of length d
from vuj to vxi and it follows that ρ−j→i,d < 0 if vxi ∈ N j

d

and 0 else. Then the weight of all walks from input vuj
follows:

ρj→i,d = ρ+j→i,d + ρ−j→i,d.

Consider the example shown in Figure 4.
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Fig. 4: An example of a signed graph where Nd and Pd don’t
completely determine ρj→i,d

The signed graph represents all systems of the form

ẋ =


0 0 0 0
−α1 0 0 0
α2 0 0 0
0 α3 α4 0

x +


β1
0
0
0

u

where α1, α2, α3, α4, β1 > 0. Here the total walk weight to
node vx4 at length 2 is

ρ1→4,2 = β1 (α2α4 − α1α3)

which can be positive, negative or zero depending on the
values of the various constants. While it is possible to define
a notion of structural herdability to capture how ρ1→4,2

depends on the system constants, this paper focuses instead
on the case where N j

d and Pjd uniquely determine the sign
of ρj→i,d.

The case where the sign of ρj→i,d is determined by N j
d

and Pjd is shown in the following Lemmas. These Lemmas
follow directly from the definitions of the sets Pjd and N j

d

and as such are presented without proof.
Lemma 2: If vxi ∈ Pjd ∧ vxi /∈ N

j
d then ρj→i,d > 0.

Lemma 3: If vxi ∈ N j
d ∧ vxi /∈ P

j
d then ρj→i,d < 0.

It is possible to relate ρj→i,d with the system matrices
A,B and ultimately the controllability properties of the

system. Define a weighted adjacency matrix Ãw for Gwx ,
where (Ãw)i,j = w((vxj , vxi)) if (vxj , vxi) ∈ Ex and
(Ãw)i,j = 0 if not. Define a weighted adjacency matrix B̃w
for Gwu , where (B̃w)i,j = w((vuj , vxi)) if (vuj , vxi) ∈ Eu
and (B̃w)i,j = 0 if not. Note that from the definition of the
weight of an edge, Ãw = A and B̃w = B. Then (Ad−1B)i,j
is the sum of the weight of all walks of length d from vuj
to vxi. More formally:

Lemma 4:
(Ad−1B)i,j = ρj→i,d.

Proof: The result will be shown via proof by induction
on d. Consider the case of d = 1. By the definition of the
weight of an edge:

(B)i,j = ρj→i,1.

Consider the weight of all walks of length d from an input
vuj to a state node vxi. By assumption, (Ad−2B)i,j =
ρj→i,d−1. As Ad−1B = AAd−2B, it follows that

(Ad−1B)i,j =

n∑
k=1

(A)i,kρj→k,d−1.

As a walk of length d is the concatenation of a walk of length
d− 1 and a walk of length 1, it follows from the definition
of the weight of a walk that

n∑
k=1

(A)i,kρj→k,d−1 = ρj→i,d.

As C is the concatenation of matrix products from B to
An−1B, Lemma 4 shows that the herdability of the system
in Equation (1) is determined by walks on Gw which have
lengths from 1 to n. Further:
Lemma 5: (C)i,(m(d−1)+j) = ρj→i,d.

Proof: From Lemma 4,

(Ad−1B)i,j = ρj→i,d.

From the definition of the controllability matrix, the sub-
matrix

(C):,m(d−1)+1:md = Ad−1B.

The result follows.

IV. A Necessary Condition for Complete Herdability
This section shows how graph structure and system herd-

ability are related by providing a necessary condition for
complete herdability of a system known as input connectabil-
ity. It also explores some examples that show why input
connectability is only a necessary condition.
Definition 4: A graph is input connectable if⋃

vuj∈Vu

Rj = Vx,

where Rj is the set of nodes reachable from vuj : Rj =
{vxi ∈ Vx | vuj → vxi}.
To show the necessity of input connectability, requires that

the condition on the range of C presented in Theorem 1 be



used to show Lemma 6, which characterizes the herdability
of a single node.

Lemma 6: A state i is herdable if and only if ∃j such that

(C)i,j 6= 0.
Proof: ((C)i,j 6= 0⇒ i Herdable) If (C)i,j 6= 0 then by

appropriate choice of the j-th element of a vector z it holds
for a positive constant w that:

(Cz)i = w

Then there is a vector k ∈ range(C) with ki > 0 and vxi is
herdable by Theorem 1.
(Herdable ⇒ (C)i,j 6= 0 ) Suppose the contrary. Then by

assumption ∀j (C)i,j = 0. Consider making x(t) ≥ h from
an initial state x(0) = 0n. As ∀j (C)i,j = 0, it holds that
∀z ∈ range(C), zi = 0 and by Lemma 1 for any reachable
x(t) ∀t ≥ 0, x(t)i = 0 and state i is not herdable.

If a single node is not herdable then the system is not
completely herdable. As such, Lemma 6 can be used to show
the following.

Theorem 2: If a system is completely herdable, then it is
input connectable.

Proof: Suppose not. Then by assumption, there exists
a node vxi such that vxi /∈

⋃
j Rj and as such there is no

walk from an input to vxi. If there is no walk to vxi, then
(C)i,: = 0n by Lemma 5 and the node will not be herdable
by Lemma 6. As such, the system is not completely herdable.

Consider the following two examples that show why
input connectability is only a necessary condition and not
a sufficient condition. These examples are presented here as
the condition of Theorem 5 in Section V ensures that the
system is input connectable and that the cases presented in
these examples do not occur.

The first example has to do with the structure of the signed
graph Gs. We return to the example given in the Section I,
which is shown again in Figure 5.
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Fig. 5: The systems represented by the graph structure in 5a
are completely herdable, while 5b shows a graph structure
that is never completely herdable.

Figure 5a represents systems of the form

ẋ =

[
0 0
0 0

]
x +

[
β1
β2

]
u

where β1, β2 > 0, which gives a controllability matrix:

C =

[
β1 0
β2 0

]
And by inspection,

range(C) = span

({[
β1
β2

]})
.

This system is always completely herdable.
On the other hand, Figure 5b can be translated to systems

of the form:
ẋ =

[
0 0
0 0

]
x +

[
−β1
β2

]
u

where β1, β2 > 0. This gives a controllability matrix:

C =

[
−β1 0
β2 0

]
And by inspection,

range(C) = span

({[
−β1
β2

]})
.

Here either vx1 or vx2 can be made larger than all thresholds
h ≥ 0 but not both. This example illustrates a fundamental
trade off when herding signed digraphs, which is that at a
given distance from the input either Nd or Pd can be herded
but not both. In the language of social networks, it is not
possible to simultaneously convince an enemy and a friend.

It turns out that Figure 5a is an example of a positive sys-
tem. In the case of a positive system, input connectability is
a necessary and sufficient condition for complete herdability.
Before showing this, consider the following definitions.

A system is positive if an element-wise non-negative initial
state under element-wise non-negative control input remains
element-wise non-negative [23]. Further a positive system
is excitable if and only if each state variable can be made
positive by applying an appropriate nonnegative input to the
system initially at rest [x(0) = 0n] [23].

With these definitions, it is possible to re-prove the theo-
rem of [24] in light of the characterization of Theorem 1:

Theorem 3: A positive linear system is completely herd-
able if it is input connectable.

Proof: By Theorem 8 of [23], an input connectable,
positive linear system is excitable. Then there is an element-
wise positive vector in the reachable subspace, which is also
the range of the controllability matrix by Lemma 1. Then by
Corollary 1, the system is completely herdable.

The second example that shows why input connectability
is only a necessary condition and not a sufficient condition
can be seen based on the weighted graph Gw, specifically
the cancellation of walk weights from an input to a state
node. It is possible that a node be included in both N j

d and
Pjd which could lead to a combination of weights such that
ρj→i,d = 0. If the only walks to vxi are of length d then the
node vxi is not herdable, as is the case for vx4 in Figure 4.
The following lemma shows a condition which ensures this
undesirable interaction does not occur.

Lemma 7: If vxk ∈ N j
d ∪ P

j
d ∧ vxk /∈ N j

d ∩ P
j
d then

ρj→i,d 6= 0.
Proof: Suppose the contrary. Then

ρj→k,d = 0

ρ+j→k,d + ρ−j→k,d = 0.

As vxk ∈ N j
d ∪ P

j
d it holds that

ρ+j→k,d > 0, ρ−j→k,d < 0



which implies that

vxi ∈ Pjd , vxi ∈ N
j
d

vxi ∈ Pjd ∩N
j
d

V. A Class of Completely Herdable Systems

This section draws together the definitions and concepts
from the previous sections to describe a class of completely
herdable systems, characterized both by the controllability
matrix and the structure of the underlying graph.

Theorem 4: If for each state i ∈ {1, 2, . . . , n}, there exists
a distance d and an input j ≤ m such that (C)i,m(d−1)+j 6= 0
and each element of the vector (C):,m(d−1)+j has the same
sign then the system is completely herdable.

Proof: For state i let di be the distance and let ji be
the input, which satisfy the conditions of the Theorem and
define γi = m(di − 1) + ji. For ease of exposition, define
the sign of a column when all elements of the column have
a single sign so that sign((C):,γi) = 1 if sign((C)i,γi) = 1
and sign((C):,γi) = −1 if sign((C)i,γi) = −1.
Consider Γ =

⋃
i γi, the set of all γi such that there is no

repeated values. This is necessary as it may be that for two
states i and j, γi = γj .

Construct the vector ααα such that ααακ = 0 if κ /∈ Γ, ααακ = 1
if κ ∈ Γ and sign((C):,κ) = 1 and ααακ = −1 if κ ∈ Γ and
sign((C):,κ) = −1.

As the condition of the Theorem holds for all i ∈
{1, 2, . . . , n}, there exists k ∈ Rn which is element wise
positive such that

Cααα = k

and the system is completely herdable by Corollary 1.
The following Theorem provides a case where the com-
position of the sets Pjd and N j

d uniquely determines the
herdability of the graph.

Theorem 5: If for each vxi ∈ Vx, there exists a distance
d and an input vuj such that vxi ∈ N j

d ∪ P
j
d and N j

d =
∅ Y Pjd = ∅ then the system is completely herdable.

Proof: Consider the herdability of a node vxi which
satisfies vxi ∈ N ji

di ∪ P
ji

di and N ji

di = ∅ Y Pj
i

di = ∅ for
some di and vuji . As N ji

di = ∅ Y Pj
i

di = ∅, it must be that
vxi ∈ N ji

di ∪P
ji

di and vxi /∈ N
ji

di ∩P
ji

di asN
ji

di ∩P
ji

di = ∅. From
Lemma 5 and Lemma 7, this implies (C)i,m(di−1)+ji 6= 0.
Additionally, as N ji

di = ∅YPj
i

di = ∅, Lemma 2 and Lemma 3
show that all nonzero elements of (C):,m(di−1)+ji have the
same sign. As this hold for all vxi, the system is completely
herdable by Theorem 4.
As Theorem 5 only provides a sufficient condition for

herdability there are cases where the condition of Theorem 5
does not hold but the system is still completely herdable.
Figure 6 shows a simple example.

u

x1

x2x3

+

+

−
+

Fig. 6: An example of a completely herdable graph which
does not satisfy the condition of Theorem 5.

VI. Subset Selection: Directed Out-branchings
If a system is not completely herdable, it is still possible

to control a subset of the system nodes to enter the set Hd.
This section presents such a selection procedure in the special
case of graphs that are a rooted out-branching.

A directed graph, Ĝ = (V̂, Ê) is a rooted out-branching
if it has a root node vi ∈ V̂ such that for every other node
vj ∈ V̂ there is a single directed walk from vi to vj . The
case considered here is that of a single input, input rooted
out-branching, which means that every node vxi ∈ V̂x has a
single in-bound walk from the single input vu. The unique
walk from vu to vxi in the input-rooted out-branching will
be referred to as πt(vu, vxi). Consider the maximum walk
length between vu and a state node, which is

dmax = max
vxi∈V̂x

len(πt(vu, vxi)).

Let Hu be the set of nodes made larger than some lower
threshold h ≥ 0 via a signal from the input vu.
Theorem 6: In an input rooted, out-branching, Hu follows

Hu =

dmax⋃
d=1

Xd,

where Xd ∈ {Pd,Nd, ∅}.
Proof: Consider the ability to herd a node vxi and

assume that len(πt(vu, vxi)) = di. As there is only one
walk from vu to vxi it holds that (C)i,d = 0, ∀d ∈
D, such that d 6= di and (C)i,di 6= 0. Further vxi is either in
Pd or in Nd but can not be in both as there is only one path
to vxi. Then if vxi is in Pdi , ρu→i,d > 0 by Lemma 2 and
consequently (C)i,di > 0 by Lemma 5 or if vxi is in Ndi ,
ρu→i,d < 0 by Lemma 3 and (C)i,di < 0 by Lemma 5.
Then it follows that (C):,di uniquely determines the abil-

ity to herd all nodes at distance di. If αdi = 1 then
((C):,diαdi)i > 0, ∀i such that vxi ∈ Pdi and Pdi is
herdable by Theorem 1. If αdi = −1 then ((C):,diαdi)j >
0, ∀i such that vxi ∈ Ndi and Ndi is herdable by Theo-
rem 1. Finally if αdi = 0 then (C):,diαdi = 0n and no nodes
are herded. Then by the appropriate choice of αdi the set of
nodes that can be herded at distance di from u, Xdi must be
one of {Pd,Nd, ∅}.

Construct a vector ααα ∈ Rn where ∀d ∈ {1, 2, . . . , dmax}

αααd =


1 so that Xd = Pd,
−1 so that Xd = Nd,
0 so that Xd = ∅,



and where the remaining n− dmax elements are 0. Then Cααα
shows the herdability of the set of nodes

⋃dmax

d=1 Xd.
Corollary 2: The maximal collection of nodes, H∗u, that

can be herded in a input rooted out-branching satisfies

|H∗u| =
dmax∑
l=1

max(|Nl|, |Pl|).

In the case of an single input, input connectable, directed
out-branching where ∀d ∈ {1, 2, . . . , dmax}, Nd = ∅ YPd =
∅, Corollary 2 shows that |H∗u| = n, or equivalently that the
system is completely herdable. Figure 7 shows an example
of selecting the set of nodes that can be herded in an input
rooted, out-branching.

u

x1 x2

x5 x6x3 x4

− +

− +− +

Fig. 7: An example of an input rooted out-branching

The graph in Figure 7 can be translated into the following
class of systems:

ẋ =


0 0 0 0 0 0
0 0 0 0 0 0
−α1 0 0 0 0 0
α2 0 0 0 0 0
0 −α3 0 0 0 0
0 α4 0 0 0 0

x +


−β1
β2
0
0
0
0

u

where α1, α2, α3, α4, β1, β2 > 0. The system has a control-
lability matrix:

C =


−β1 0 0 0 0 0
β2 0 0 0 0 0
0 α1β1 0 0 0 0
0 −α2β1 0 0 0 0
0 −α3β2 0 0 0 0
0 α4β2 0 0 0 0


where

range(C) = span






−β1
β2
0
0
0
0

 ,


0
0

α1β1
−α2β1
−α3β2
α4β2






As such the possible sets of herded nodes are
{1, 3, 6}, {1, 4, 5}, {2, 3, 6}, {2, 4, 5}.
The result of Theorem 6 is similar in nature to the k-

walk controllability theory put forward in [25]. The k-walk
theory shows that for each d ∈ {1, 2, . . . , dmax} one element
of either Nd or Pd can be controlled. In the graph given in
Figure 7, the possible sets of nodes that can be controlled are

{1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 4}{2, 5}, {2, 6}. As a
consequence of the k-walk theory, the maximal collection of
nodes that are controlled in a directed out-branching from
input vu, C∗u, satisfies

|C∗u| = dmax.

In the case of herding a network, Corollary 2 shows that the
maximal collection of nodes, H∗u, will satisfy

dmax ≤ |H∗u| ≤ n.

Therefore in the worst case, the same number of nodes can
be herded as can be controlled and depending on the network
structure many more nodes can be herded. Note that the
results of Theorem 6 do not extend directly to the multi-input
out-branching case, as in a multiple input out-branching the
sets Pjd and N j

d no longer uniquely determine the ability to
herd a node.

VII. Conclusion

In this paper, we present a characterization of the herd-
ability of a subset of the state space via a condition on the
range of the controllability matrix, C. A classification of the
underlying system graph allowed for the exploration of a
number of consequences of the condition on the range of C
including that input connectability is a necessary condition
for complete herdability and that the sets Pjd and N j

d can
be used to characterize both a class of completely herdable
systems and the nodes that can be herded in a single input,
input rooted out-branching.
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