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Abstract—The problem of controlling complex networks is of
interest to disciplines ranging from biology to swarm robotics.
However, controllability can be too strict a condition, failing
to capture a range of desirable behaviors. Herdability, which
describes the ability to drive a system to a specific set in the
state space, was recently introduced as an alternative notion.
This paper considers the application of herdability to the study
of complex networks, first under the assumption that a positive
system evolves on the network, and then in the general case. In
the positive systems case, the herdability of a class of networked
systems is investigated and two problems related to ensuring
herdability are explored. The first is the input addition problem,
which investigates which nodes in a network should receive inputs
to ensure that the system is herdable. The second is a related
problem of selecting the best single node from which to herd the
network, in the case that a single node is guaranteed to make
the system herdable. A novel control energy-based herdability
centrality measure is introduced in order to select the best
herding node. In the general case, a previously introduced method
for testing whether a system is completely herdable based on the
underlying sign pattern of the system matrices is compared to a
novel optimization based framework on a set of signed complex
networks.

I. Introduction
Controlling networked systems has long been of interest

to the controls community [1]–[3] and has recently received
considerable attention from the complex networks community
[4]. Complete controllability is often used to describe the
ability of a complex network to be controlled, however many
systems do not require complete controllability for desired sys-
tem behavior to be achieved. This paper considers instead an
alternative notion called herdability, which describes systems
that are not completely controllable but for which a class of
desirable behaviors are still possible [5], [6].
Herdability is particularly applicable to understanding the

behavior of complex networks such as social and biological
systems. A system is completely herdable if all the elements
of the state can be brought above a threshold by the application
of a control input. Thresholds capture an important class of
behavior in biological and social systems, in which a system
reaches a tipping point and as a result the behavior of a system
may change dramatically. Examples of behavior driven by
thresholds include the firing of a neuron [7], quorum sensing
in bacteria [8] and collective social action [9], [10].
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Selecting nodes to ensure a system is herdable is an example
of an input addition problem [11]. Input addition problems
have been previously considered in the case of controllability
of complex networks. In multi-agent systems, this problem is
referred to as the leader selection problem [12], [13], which
determines the controllability of a system following consensus
dynamics based on a given selection of leader nodes. The
input addition problem has also been considered when seeking
to ensure system controllability of a system that does not
necessarily follow consensus dynamics [11], [14]–[17]. In the
case of known dynamics, finding the minimum number of state
nodes to actuate to ensure controllability was shown to be
NP-hard [15]. A similar problem, that of selecting nodes to
ensure reachability to a specific end point or subspace, was
also found to be NP-hard [18]. In contrast to these results,
this paper shows that in the case of a known, positive system
it is possible to determine in linear time which nodes will
ensure that the system is herdable when input is applied to
them.
The input addition problem has also been considered for the

case of a structured system [19], a modeling framework that
attempts to capture the behavior of a class of systems that share
the same underlying interaction pattern, by applying the notion
of structural controllability [20]–[22]. A system is structurally
controllable if for almost all collections of edge weights the
system is controllable. In the case of structured systems, it has
been shown that input selection can be done efficiently [14],
[16].
Ensuring the herdability of the system when the underly-

ing network representation has a fixed sign pattern is also
considered here, which is related to sign controllability [23]–
[26]. Sign controllability, which determines controllability of
a class of systems that share the same underlying sign pattern,
builds on two sets of results from the economics and ecology
literature. The first is sign stability [27], [28], which asks
whether a matrix is stable based on its sign pattern. The
other is sign solvability [29]; which asks, when solving the
matrix equation Ax = b, whether the sign pattern of x is
uniquely determined by the sign pattern of A and b. While sign
controllability has been considered with regard to the structure
of the various system matrices [23]–[25] as well as the sign
pattern of the underlying graph [26], it has yet to be applied
to complex network data.
This paper considers the problem of characterizing nodes

based on control energy, which has been previously considered
in the context of controllability. A number of controllability
based centralities were introduced in [30] and [31], some of
which were extended to include considerations of robustness
to noise in [32] and used to study the brain in [33]. This
paper also considers control energy; however the formulation



of the control problem here is based on the notion of herd-
ability which is guaranteed to hold for a single input node
in the systems considered. There is no similar guarantee for
controllability that makes comparison to controllability related
metrics difficult.

The rest of the paper is organized as follows: In Section
II the basic definitions of herdable systems are introduced.
Section III considers the problem of selecting nodes to ensure
a positive system is herdable. In Section IV, a novel centrality
measure is introduced to compare nodes in a herdable network.
Section V considers the general case of selecting nodes to
herd a network based on sign pattern. The paper concludes in
Section VI.

II. Herdable Systems

A networked system can be described by its graph structure
and the dynamics that act over the graph structure. Consider
a graph G = (V, E), where E is the directed edge set and
V = Vx∪Vu, where Vx is the set of state nodes and Vu is the
set of control nodes, which together satisfy Vx ∩ Vu = ∅. Let
‖Vu‖ = m and ‖Vx‖ = n, where ‖· ‖ denotes cardinality. Each
state node vi ∈ Vx has an associated scalar state xi and each
control node µi ∈ Vu has a scalar input ui. The interaction
dynamics of the system are assumed to be linear:

ẋ = Ax+Bu,

where A ∈ Rn×n, B ∈ Rn×m, x = [x1, x2, . . . , xn]
T , and

u = [u1, u2 . . . , um]T . The structure of the system matrices
(A,B) of the linear system are derived from the underlying
graph G. In general a non-zero element of A, aij , corresponds
to the weight on an edge leaving from state node vj ∈ Vx and
entering state node vi ∈ Vx. Similarly a non-zero element of
B, bij , corresponds to an edge from input node uj ∈ Vu to
state node xi ∈ Vx.

Herdability considers the general problem of going from any
initial point in the state space, x(0), to a terminal set [5], [6].
Specifically, the terminal set, Hd, is a shifted positive orthant,
defined as Hd = {x ∈ Rn : xi ≥ d}. The following definition
characterizes the complete herdability of a system.

Definition 1. A system is completely herdable if ∀x(0) ∈ Rn
and ∀d ≥ 0 there exists a finite time T and an input u(t), t ∈
[0, T ] s.t. x(T ) ∈ Hd under control input u(t).

This paper first considers that the dynamics evolving over
the network correspond to consensus dynamics, which are an
example of a positive system. A continuous time system is
positive if the weights on edges between nodes in a network
are positive. Self edges are allowed to be negative. The study
of positive systems covers a large range of complex networks,
including subject areas ranging from epidemic spread and,
more generally, compartmental systems in biology to consen-
sus in opinion dynamics and robotics [34]. As shown in [5],
the herdability of a positive system can be characterized based
on its underlying graph structure.

Theorem 1 (Theorem 4 from [5]). A positive linear system
is completely herdable if and only if it is input connectable,

i.e. there is a path from an input to any state node in the
underlying graph structure.

Input connectability is a necessary condition for structural
controllability [11], sign controllability [26] as well as for
herdability [5]. This paper considers the implication of the
above Theorem for the application of herdability to a positive
system. The positive system assumption is reasonable in both
the control context, where a significant portion of the work
on control of networked systems discusses consensus formu-
lations which are positive systems [2] (though that has been
changing since [35]), and in the complex systems context, as
many complex network representations are either unweighted
or have positive weights between edges.
In the case that the underlying network representation has

both positive and negative edges between nodes, determining
whether a given input renders the system herdable requires a
more in depth analysis. In [6], conditions that ensure herdabil-
ity were found based on the sign pattern of the controllability
matrix C = [B,AB,A2B, . . . , An−1B] as well as the sign
pattern of the underlying network topology. These conditions
and their application in complex networks will be considered
further in Section V.
Before concluding the introduction to herdable systems,

let us consider how herdability differs from controllability;
specifically with regard to symmetry with respect to an input.
The two major lines of work on the controllability of networks,
that of structural controllability and consensus dynamics over
networks, have identified symmetry with respect to a control
input as an sufficient condition for the loss of controllability
of a system [12], [20].
Symmetric nodes must be controlled together, which vio-

lates the condition of complete controllability. As herdability
looks only at driving the state to be larger than some threshold,
the herdability condition is satisfied even when the symmetric
nodes are controlled to the same point. An illustrative case of
symmetric systems is the star or hub graph, shown in Figure
1. The fact that symmetry degrades controllability explains
why past analysis of controllability of complex networks has
found that driver node selection avoids hubs [14]. In the case
of herdability, it is possible to select the center of the star
to apply input to herd a positive system as in Figure 1b. In
the case of a signed network, fewer nodes than in the case
of controllability can receive input to ensure herdability, with
the specifics depending on the underlying sign pattern as in
Figure 1c.

III. Selecting Herding Nodes
It is often the case when interacting with networked systems

that instead of being given an existing set of interconnections
with input nodes, the problem is one of selecting the state
nodes with which to interact to ensure the system is herdable,
i.e. to design the B matrix of the linear system. To this end, this
section considers the input selection problem: how to select a
minimal subset, H, consisting of NH state nodes that ensures
herdability of the system, where each element of H is called
a herding node. Note that based on the desired terminal set
and the assumption of a positive system, once H is identified,
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Fig. 1: 1a: Structural controllability analysis will select 3
nodes in order to ensure controllability of the system. 1b: If
the system is positive, any node can be selected to ensure
that the system is herdable, including the middle node, as
symmetry does not degrade the ability to herd the network. 1c:
If there are both positive and negative weights in the network,
ensuring that the system is herdable can require applying input
to multiple nodes.

system herdability can be ensured with a B ∈ Rn equals 1 at
position i if i ∈ H and 0 otherwise.
Consider now the problem of making a given system herd-

able by adding input to make a network input connectable.
The solution to this problem will be called a Herding Cover.
In order to generate a herding cover, the system must first
be decomposed into strongly connected components (SCCs).
This can be achieved in linear time by Kosaraju’s algorithm
[36]. Once the strongly connected components are identified,
a graph condensation is performed which generates a directed
acyclic representation of the graph G, represented as Ga =
(Va, Ea). Each element of Va represents a strongly connected
component of G and an edge is in Ea if there is a link in E
between any nodes in the respective SCCs [37]. Let Nr be the
number of roots of this acyclic representation.

Theorem 2. It holds that

NH = Nr.

As such, NH can be determined in linear time.

Proof. Consider the acyclic representation of the graph with
adjacency matrix A. Each root node of this graph represents
a SCC of the graph that has no in-bound edges from other
SCCs. By applying input to one node from each such SCC,
then by the definition of strong connectivity the entire SCC is
herdable as well as all nodes downstream from the given SCC.
As input is applied to all roots, the entire system is herdable.

This spanning forest representation can be computed in
linear time with respect to the original network size. The
roots of this forest representation can found in linear time,
by checking each node in Va to find the nodes with zero in-
degree.

Corollary 1. If the graph is undirected or consists of disjoint
strongly connected components, then

NH = Nw,

where Nw is the number of weakly connected components.

Corollary 2. If the directed graph G is strongly connected,
then any one node set forms the root of a Herding Cover.

Table I shows results for analysis of the fraction of herding
nodes, nH , compared with the fraction of driver nodes, nc,
from the controllability analysis of [14]. Across all considered
networks nH ≤ nc. In 15 of the 24 networks, herdability
requires communication with fewer nodes than controlling the
network as nH < nc. There are some networks, such as the
Western US Power Grid, where nH << nc. These networks
consist of a single SCC, which can be made herdable with one
herding node as shown in Corollary 2.

IV. Herdability Centrality

If the system is herdable from any one node, a secondary
issue arises of selecting which one node to use as the herding
node. To select between nodes in a SCC, a new herdability
centrality measure is proposed that takes into account the
energy required to drive the system into the set Hd. While
many networks are not necessarily strongly connected, as
mentioned previously any directed graph can be broken down
into a non-overlapping set of SCCs in linear time; allowing
each SCC to be considered individually to determine the
herdability centrality.
Consider the problem of entering Hd from the origin with

minimal control energy:

J(B, d) = min
u(t)

∫ tf

0

‖u(τ)‖2dτ

s.t. ẋ(t) = Ax(t) +Bu(t), t ∈ [0, tf ]

x(tf ) ∈ Hd
x(0) = 0n,

(1)

where the minimum energy, J , is parameterized by the struc-
ture of the interaction with the control inputs, given in the
matrix B, and by d > 0 which is assumed to be fixed.

The formulation in Eq. (1) can be contrasted with the mini-
mum energy optimal control problem as typically studied, i.e.
in the context of completely controllable systems. Specifically
the desired end position of the system is typically a desired
final point xf instead of the set H. In general, for systems that
are not completely controllable, there is no guarantee that a
desired xf or even H can be reached. However if the system is
herdable, then by definition the reachable subspace from 0n,
which we denote R(0), intersects the set Hd.

Theorem 3. If the system is herdable, then the minimum
energy to reach Hd is of the form

xTfW
+
c xf ,

where xf ∈ Hd∩R(0), andW+
c is the Moore-Penrose pseudo-

inverse of the controllability grammian:

Wc =

∫ tf

0

eAτBBT eA
T τdτ.

Proof. If the network is herdable then ∃xf ∈ Hd∩R(0). This
reachable xf allows the use of a number of properties of the
controllability grammian. To reach ∀xf ∈ R(0)∩Hd requires
an input u(t) that satisfies

∫ t
0
eA(t−τ)Bu(τ)dτ = xf . This

u(t) will have the form u(t) = BT eAtp where Wcp = xf .



Type Name N L Dir. nw nH nc

Collaboration Astro-Physics [38] 16,706 242,502 U 1 0.062 0.080
Condensed Matter Physics [38] 16,726 95,188 U 1 0.071 0.108
Cond. Mat. Physics 2003 [38] 31,163 240,058 U 1 0.051 0.090
Cond. Mat. Physics 2005 [38] 40,421 351,384 U 1 0.045 0.083
High Energy Physics [38] 8,361 31,502 U 1 0.159 0.208
Network Science [39] 1,589 5,484 U 1 0.249 0.260
Jazz [40] 198 5,484 U 1 0.005 0.005
General Relativity [41] 26,196 28,980 U 1 0.813 0.816

Biological C. Elegans Neural [42] 306 2,345 D 3.7 0.121 0.190
Protein Interaction [43] 2,114 4,480 U 1 0.197 0.462
Dolphin Social [44] 62 318 U 1 0.016 0.032

Infrastructure Western US Power Grid [42] 4,941 13,188 U 1 0.0002 0.116
Top Airports [45] 500 5960 U 1 0.002 0.250
Football Games [46] 115 1,226 U 1 0.009 0.009

Online UCIonline [47] 1,899 20,296 D 138 0.291 0.323
Political Blogs [48] 1,490 19,025 D 1.89 0.340 0.471

Friendship Third Grade [49] 22 177 D 1 0.046 0.046
Fourth Grade [49] 24 161 D 1 0.042 0.042
Fifth Grade [49] 22 103 D 1 0.046 0.046
Highschool [50] 73 243 D 2 0.137 0.178
Fraternity [51] 58 1,934 U 1 0.017 0.017
EIES 1 [52] 32 650 D 1 0.031 0.031
EIES 2 [52] 32 759 D 1 0.031 0.031
Mine [53] 15 88 U 1 0.067 0.067

TABLE I: For each network, the table shows the number of nodes N , the number of edges L, whether the network is Undirected
or Directed, the ratio of number of herding nodes to number of weakly connected components nw = NH

Nw
, the fraction of herding

nodes nH = NH

N , the fraction of driver nodes nc = Nc

N .

There exists a solution to Wcp = xf as R(0) = range(Wc)
i.e. that xf ∈ range(Wc). These solutions are of the form

p∗ =W+
c xf + [I −W+

c Wc]xf

with p∗ = W+
c xf as the unique solution in the range of Wc,

where W+
c can here refer to any generalized inverse [54]. If

W+
c refers specifically to the Moore Penrose Inverse (or any

generalized reflexive inverse) the form of the minimum energy
to reach xf is xfW+

c xf .

With the analytical expression for the minimum energy to
reach xf , it is possible to reframe Eq. (1) as the problem of
choosing the optimal xf in the set Hd ∩R(0):

min
xf

xTfW
+
c xf

s.t. xf ≥ d
xf ∈ R(0)
x(0) = 0n.

Here the problem can once again be simplified further based
on properties of the controllability grammian. As Wc is a
symmetric, real matrix, the eigenvectors of Wc are mutually
orthogonal and the eigenvectors with non-zero eigenvalues
span the range of Wc [55]. When rank(Wc) = r ≤ n there
are r eigenvectors {v1, . . . , vr} associated with the r non-zero

eigenvalues λ1, . . . , λr which form an orthonormal basis for
range(Wc). Therefore as xf ∈ range(Wc)

xf =

r∑
i=1

αivi. (2)

Using that vi are orthonormal and also eigenvectors of W+
c

with associated eigenvalues 1
λi
, substituting in Eq. (2) gives

min
α

r∑
i=1

α2
i

λi

s.t. V α ≥ d,
(3)

where V = [v1 . . . vr] . The problem in Eq. (3) can be
more efficiently solved than that in Eq. (1), allowing larger
networks to be analyzed. This formulation also shows the
similarity to the measure known as average controllability
[31], which is defined as trace(W−1c ). However as many
complex networks are close to uncontrollable, this metric is
not explicitly calculated [33].

A. Calculating Herdability Centrality
With a simplified version of the minimum energy optimal

control problem in hand, it is possible to move on to calcu-
lating herdability centrality. Each state node of the herdable
system is considered in turn as the sole input node allowing the
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Fig. 2: Herdability Centrality and Hubs: (a) Herdability centrality of a star graph. The center of the star requires the lowest
input energy to reach H and hence has the highest herdability centrality. (b) Plot of average degree of the complete network
vs average degree of the top 10% most herdable nodes, with a line representing average network degree.

calculation of Ji = J(ei, d), where ei ∈ Rn is 1 at position
i and 0 elsewhere, and d > 0 is fixed. The quantity Ji is
the minimum energy to reach H using only node i as control
input. In order to compare the minimum energy across nodes,
the herdability centrality for node i, Hci, is defined as

Hci =
min
k
{Jk}

Ji
.

Herdability centrality is normalized to be between 0 and 1,
which aids interpretability as the control energy for complex
networks can be quite large. As reaching H with minimum
energy is the chosen metric when interacting with these
networks, the node(s) with minimum energy to reach H across
all nodes will have the highest herdability centrality.

For the purpose of calculating herdability centrality of
existing complex networks, the largest SCC of each considered
network is used as the underlying interaction topology. The
dynamics are assumed to be a modification of consensus
dynamics, related to the opinion dynamic model of Taylor,
which captures the effect of an external source of information
on the opinion of an agent [56]. When node i is the sole
herding node, the consensus dynamics are as follows:

ẋj(t) =
∑
z∈Nj

(xz(t)− xj(t)), ∀j 6= i

ẋi(t) =
∑
k∈Ni

(xk(t)− xi(t)) + u(t)− xi(t),

where Ni is the set of nodes with edges entering node i. In
order to improve efficiency of the calculation, the final time
is taken to be tf = ∞ as the infinite horizon controllabil-
ity grammian can be solved for efficiently, if A is stable,
as the solution to the continuous time Lyapunov equation
AWc +WcA + BBT = 0. Note that while consensus does
not normally provide a stable A, the model above does.
As mentioned previously, herdability allows hubs to be

selected to herd complex systems, though it is not known a
priori that hubs will indeed be selected. Figure 2(a) shows
that the center node of the hub has the highest herdability

centrality, and therefore requires the least energy to reach Hd.
Figure 2(b) shows that the introduced herdability centrality
tends to select nodes that have higher than average degree, i.e.
that herdability centrality tends to select hubs.

B. Comparison to Other Centrality Measures
Given that herdability centrality tends to select high degree

nodes, the question becomes whether it is possible to forgo the
computationally expensive herdability centrality calculation in
favor of an inexpensive graph structure based calculation.
Table II introduces a number of centrality measures which
will be compared against herdability centrality.

Name Description
In-Degree Centrality The number of in-bound edges
Eccentricity The maximum distance from the node

to any other node
Closeness Centrality The sum of the reciprocal of the distance

to each other nodes
Betweenness Centrality The number of shortest paths that pass

through the node divided by the total number
of shortest paths between two nodes

Eigenvalue Centrality For node i, the ith component of
the dominant eigenvector of
the Adjacency Matrix

Katz Centrality [57] The weighted sum of all paths, where a path
of length d receives a weight of αd, α > 0.

TABLE II: Description of Centrality Measures

Figure 3 shows that while high herdability centrality nodes
tend to have high degree, the highest in-degree node does
not necessarily have high herdability centrality. This holds
for all centrality measures considered. In 8 of the 19 net-
works considered the traditional centrality measures overlap
with the highest herdability centrality nodes. However, there
is no single centrality measure which can be used reliably
to select the minimum energy herding node. The overlap
between herdability centrality and existing measures tends to
occur in undirected networks. As control energy is related
to the symmetry structure of the network [13], it may be
that, in undirected networks, the existing centrality measures



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
e

rd
a

b
ili

ty
 C

e
n

tr
a

lit
y

Betweeness Centrality

Directed

Undirected

Thi
rd

Fift
h

Fou
rth

Eie
s 
1

Eie
s 
2

 H
ig
hs

ch
oo

l

Blo
gs

U
C
Io

nl
in
e

C
. e

le
ga

ns
M

in
e

Fra
t

D
ol
ph

in
s

Foo
tb

al
l

Ja
zz

N
et

. S
ci
.

Airp
or

ts

Pro
te

in

Q
ua

nt
um

Pow
er

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
e

rd
a

b
ili

ty
 C

e
n

tr
a

lit
y

Closeness Centrality

Directed

Undirected

Thi
rd

Fift
h

Fou
rth

Eie
s 
1

Eie
s 
2

 H
ig
hs

ch
oo

l

Blo
gs

U
C
Io

nl
in
e

C
. e

le
ga

ns
M

in
e

Fra
t

D
ol
ph

in
s

Foo
tb

al
l

Ja
zz

N
et

. S
ci
.

Airp
or

ts

Pro
te

in

Q
ua

nt
um

Pow
er

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
e

rd
a

b
ili

ty
 C

e
n

tr
a

lit
y

In Degree Centrality

Directed

Undirected

Thi
rd

Fift
h

Fou
rth

Eie
s 
1

Eie
s 
2

 H
ig
hs

ch
oo

l

Blo
gs

U
C
Io

nl
in
e

C
. e

le
ga

ns
M

in
e

Fra
t

D
ol
ph

in
s

Foo
tb

al
l

Ja
zz

N
et

. S
ci
.

Airp
or

ts

Pro
te

in

Q
ua

nt
um

Pow
er

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
e

rd
a

b
ili

ty
 C

e
n

tr
a

lit
y

Eigenvector Centrality

Directed

Undirected

Thi
rd

Fift
h

Fou
rth

Eie
s 
1

Eie
s 
2

 H
ig
hs

ch
oo

l

Blo
gs

U
C
Io

nl
in
e

C
. e

le
ga

ns
M

in
e

Fra
t

D
ol
ph

in
s

Foo
tb

al
l

Ja
zz

N
et

. S
ci
.

Airp
or

ts

Pro
te

in

Q
ua

nt
um

Pow
er

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
e

rd
a

b
ili

ty
 C

e
n

tr
a

lit
y

Eccentricity Centrality

Directed

Undirected

Thi
rd

Fift
h

Fou
rth

Eie
s 
1

Eie
s 
2

 H
ig
hs

ch
oo

l

Blo
gs

U
C
Io

nl
in
e

C
. e

le
ga

ns
M

in
e

Fra
t

D
ol
ph

in
s

Foo
tb

al
l

Ja
zz

N
et

. S
ci
.

Airp
or

ts

Pro
te

in

Q
ua

nt
um

Pow
er

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
e

rd
a

b
ili

ty
 C

e
n

tr
a

lit
y

Katz Centrality

Directed

Undirected

Thi
rd

Fift
h

Fou
rth

Eie
s 
1

Eie
s 
2

 H
ig
hs

ch
oo

l

Blo
gs

U
C
Io

nl
in
e

C
. e

le
ga

ns
M

in
e

Fra
t

D
ol
ph

in
s

Foo
tb

al
l

Ja
zz

N
et

. S
ci
.

Airp
or

ts

Pro
te

in

Q
ua

nt
um

Pow
er

Fig. 3: Selecting the Highest Herdability Node: Each subgraph considers a different centrality measure and shows the highest
(in red) and lowest (in blue if present) herdability centrality of the node(s) identified as having the highest value for each
respective centrality Within each categorization (directed or undirected) the networks are organized starting with the smallest
network on the left. In all undirected networks, all calculated centrality measures have high herdability centrality. In some
directed networks, In-Degree and Katz centrality identify high herdability nodes.



provide information about the symmetry structure. Examining
the directed networks shows that size of the network seems
to have no impact on overlap. For example, in the Fifth
Grade Friendship network, N = 22, all considered centrality
measures select a node with low herdability centrality.

V. Signed Networks
Having considered in-depth the input selection problem in

the case of a positive system, we now consider the more
general case of herdability when edges between nodes are
allowed to have both positive and negative weights, as would
happen when there is antagonism in the underlying social
network. This section provides an initial estimate of how
herdable complex networks are by selecting single nodes in
the network as input nodes and then calculating the resulting
number of herded nodes.

As the starting point to determine the number of nodes that
can be herded, we apply the results of [6] of which the key
theorems are shown below. The first two are necessary and
sufficient conditions on the range space of C, the controllability
matrix, and Wc, the controllability grammian.

Theorem 4 (Theorem 1 in [6]). A subset of states X ⊆
{x1, x2, . . . , xn} in a linear system is herdable if and only
if there is exists a vector k ∈ range(C) that satisfies ki > 0
for all xi ∈ X .

Theorem 5 (Corollary 1 in [6]). A set of states X ⊆
{x1, x2, . . . , xn} in a linear system is herdable if and only
if there is exists a vector k ∈ range(Wc) that satisfies ki > 0
for all xi ∈ X .

The second is a necessary condition based on the matrix
[A B].

Theorem 6 (Theorem 2 in [6]). If a linear system is completely
herdable then there exists an element-wise positive vector k ∈
range([A B]).

The above theorems provide an avenue to test whether a
given linear system ẋ = Ax+Bu is herdable by first using A
and B to calculate the required matrix M ∈ {C,Wc, [A B]}
(depending on which theorem is used) and then checking the
range of the desired matrix. Note that verifying that an element
wise positive vector is in the range of a matrix can be difficult
for large systems. Methods to perform this verification will be
discussed in depth later in this section.

Before discussing how to translate the above theorems into
methods for verifying that a system is herdable, it’s worth
discussing the properties of the three matrices {C,Wc, [A B]}.
As the eventual goal is to determine herdability for large
scale systems we are concerned with the computational cost
of producing the desired matrix. We begin with the least
computationally intensive matrix to produce, [A B]. While
the test based on [A B] is attractive as it requires negligible
computational cost to generate the matrix, the condition of
Theorem 6 is only a necessary condition, which means that
should an element wise positive vector be found in the range of
[A B], another method would be required to make a definitive
statement that the system is herdable. For the systems that

are considered later in this section, the condition on the range
of [A B] is treated as an upper bound, capturing the largest
number of node that could be expected to be herded from a
given node.
The controllability grammian is an attractive alternative and

has been used when discussing controllability of complex
networks, especially brain networks [33]. In the case of large
scale networks, the infinite horizon controllability grammian
is used as it can computed in linear time. However A must be
stable for the infinite horizon controllability grammian to be
computed. For the networks analyzed below, it was assumed
that A = A(G), that the matrix A is the adjacency matrix of
the graph. This was done in order to best match the method-
ology of [6] which considers a one to one correspondence
between the A matrix and the graph which is analyzed. In this
case, the resulting system is unstable and the infinite horizon
controllability grammian can not be computed.
Finally Theorem 4 can be used to show herdability based

on the controllability matrix C, which can be computationally
expensive and the resulting matrix that must be analyzed
can be large, depending on the number of inputs, m, as
C ∈ Rn×nm. However, the controllability matrix does have the
advantage that if the complex network is structurally balanced1
then the controllability matrix test gives information about
the herdability of a class of systems that share the same
sign pattern [6]. Additionally if the system is unstable, the
controllability matrix can be partially computed, which gives
some information about the herdability of the system.
Having discussed the matrices that one can use to test

herdability, we now turn to the question of how one tests
herdability. In this section two methods will be discussed. The
first is from [6], which discussed using the sign pattern of the
underlying graph to determine its herdability.
In [5] it was shown that if a node was in a uni-signed column

of the controllability matrix then it is herdable, where a uni-
signed vector has all non-zero elements with the same sign.
This was extended in [6] to show that if a node is in a balanced
column of the controllability matrix, where a balanced vector
has both positive and negative signs on the non-zero elements
of the vector, and if the nodes with opposite sign are already
known to be herdable then the node is herdable. Consider the
following simple example system:

ẋ =

[
α1 0
α2 0

]
x+

[
β1
0

]
u,

for α1, α2, β1 > 0. Then

C =
[
β1 α1β1
0 −α2β1

]
.

The first column of C is uni-signed, showing that x1 is
herdable. The second column is balanced, however as x1 is
herdable it can be used to show that x2 is also herdable.
Verifying herdability via sign pattern in this manner can be
translated into Algorithm 1.
The results from the implementation of Algorithm 1 might

be expected to be conservative, given that they only take

1A graph is structurally balanced if all semi-cycles (cycles when edge
direction is ignored) have a positive sign [58].



Algorithm 1 Checking Herdability based on Sign Pattern.
Input: M ∈ {C,Wc, [A B]}
Output: H the set of herdable nodes
H← ∅
for c in columns of M do
Pc ← {i|(Mi,c > 0)}
Nc ←= {i|(Mi,c < 0)}

end for
loop
if Pc = ∅ or Pc ⊆ H then

H← H ∪Nc
else if if Nc = ∅ or Nc ⊆ H then

H← H ∪ Pc
end if

end loop

sign pattern into account. To validate the results based on
sign pattern, the analysis is augmented with a computational
method to determine the herdability of a system based on
the controllability matrix C. We define the cardinality herding
problem as solving the following linear program:

max
u

n∑
i=1

(Cu)i

s.t. Cu ≤ 1n.

(4)

Once the linear program is solved, the number of positive
elements of the resultant vector Cu is examined to determine
how many states have been herded. This relatively simple
optimization problem can be used to show that a large portion
of a given network is herdable from one node.

A collection of complex networks from the literature are
used in the analysis, though as mentioned previously the
number of signed networks considered in the literature is quite
small, resulting in far fewer networks analyzed in the general
case. The networks are summarized in Table III. Each network
has been checked for structural balance, based on the linear
time algorithm of [59]. None of the networks examined are
structurally balanced, i.e. the controllability matrix results hold
for a specific weight combination and not for all networks that
share the same sign pattern.

Each network referenced in Table III, has an associated
signed adjacency matrix Ãs(G). It is assumed that the dynam-
ics of the linear system which evolves over the network follows
A = Ãs(G). Under these assumptions, all of the resultant
linear systems are unstable. The signed networks are treated
differently than the positive systems in Section IV-A as moving
from a graph to consensus dynamics adds a negative self loop
to each node, disrupting the underlying sign pattern of the
network. A positive system remains a positive system with
the addition of a negative self loop due to the definition of
a Metzler matrix, [34], however adding a negative self loop
may radically change the sign pattern of a linear system over
a signed network. For example, if the underlying graph G was
structurally balanced, then adding a self loop would make it no
longer structurally balance. We leave an in-depth examination
of the effect of these self loops to future work.

A consequence of the instability of the matrix A is that the
matrix product Am diverges numerically for some m < n.
This implies that the controllability matrix can not be fully
computed. However in the analysis that follows the controlla-
bility matrix is calculated until the resulting column has an
element larger than a threshold (here 1010) allowing partial
information on system herdability to be obtained.
Given the size of many of the networks, the herdability of

the network was determined by selecting a random subset of
100 nodes and each node in that subset was considered in
turn as the sole input. To consider the ability to herd from
node i, it is assumed that B = ei and the herdability of the
system is determined by either applying Algorithm 1 or the
linear program in Eq. (4) to the controllability matrix. Table III
shows the highest and lowest percentage of nodes that can be
herded for the various methods.
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Fig. 4: Percent of system nodes herded on the Bitcoin Alpha
network based on the sign pattern of the controllability matrix
when taking each node as the sole input in turn.
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Fig. 5: Percent of system nodes herded on the Bitcoin Alpha
network based on the cardinality herding analysis of the
controllability matrix when taking each node as the sole input
in turn.

Based on Table III, one can see that, even in the best
case, the sign pattern of the controllability matrix predicts that
only a small fraction of the network can be herded. However,
solving the cardinality herding problem from Equation (4)
shows that large fractions of the network can be herded, up to
83% from one node. As a sanity check for these results note



Network Name N L % Pos [A B]h Hh Hl Ch Cl

Bitcoin Alpha [60] 5,881 35,592 93 86.175 22.522 0.026 83.109 0.026
Bitcoin OTC [60] 3,783 24,186 89 79.221 17.650 0.017 76.365 0.017

Slashdot 11/06/08 [61] 77,357 516,575 77 50.385 0.019 0.001 38.517 0.001
Slashdot 02/16/09 [61] 81,871 545,671 77 49.562 0.024 0.001 36.699 0.001
Slashdot 02/21/09 [61] 82,144 549,202 77 50.464 0.052 0.001 35.789 0.001

TABLE III: Signed networks used to test system herdability: Each network has its name, number of nodes N , number of edges
L, % Pos the fraction of positive edges, [AB]h the highest percentage of that can be herded based on the necessary condition
on [AB], Hh the highest percentage of the network that can be herded based on the sign of C, Hl the lowest percentage of
the network that can be herded based on the sign of C, Ch the highest percentage of the network that can be herded based on
cardinality herding of C, and Ch the lowest percentage of the network that can be herded based on cardinality herding of C.

that the highest percentage of herded nodes for each network
is also lower than the upper bound based on the analysis of
[A B]. It’s also interesting to note that the gap between the
upper bound and the maximum percentage herded based on
cardinality herding is related to the fraction of positive edges in
the network. This suggests that when there are more negative
edges the system is harder to herd.

The results of Table III show the best and worst case for
the two methods applied across a sample of input nodes. The
question remains where the remaining nodes lie between the
upper and lower bounds. In order to address this, every node
in the Bitcoin Alpha network was taken as input and the
percentage of nodes that can be herded was calculated for
every node. The results are shown in Figure 4 and Figure 5.
The sign pattern of the controllability matrix C suggests that
certain nodes can herd significantly more nodes that others.
However, as shown in Figure 5, based on cardinality herding
problem the opposite is true, most nodes can herd 70− 80%
of the network. This suggests that selecting a single node is
sufficient to herd a large portion of the network. More work is
required to extend these results to the multi input case, however
it’s likely that applying input to only a few nodes can ensure
that the entire system is herdable.

VI. Conclusion

This paper provides the first application of the notion
of herdability to complex network data. Input selection for
positive systems was shown to be possible in linear time.
A novel centrality measure was introduced, which tends to
select hubs to drive a system with minimum energy to a
desired terminal set, even though hubs are not selected when
considering the controllability of the system. It is shown that
many centrality measures are not suitable for selecting herding
nodes, especially in directed networks. In the general case, in
which a linear system inherits a sign pattern from the underly-
ing graph, it is shown that a large portion of signed networks
can be herded from a single node. The results presented here
are the beginning of a more nuanced understanding of the
application of control theoretic ideas in complex networks.
The notion of herdability examines more explicitly the existing
assumptions about interacting with complex networks and in
doing so helps bring new insight into the control theoretic
characterization of complex networks.
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