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Abstract—We consider the notion of herdability, a set-based
reachability condition, which asks whether the state of a system
can be controlled to be element-wise larger than a non-negative
threshold. First a number of foundational results on herdability
of a continuous time, linear time invariant system are presented.
These show that the herdability of a linear system can be
determined based on certain matrices, such as the controllability
matrix, which arise in the study of controllability of linear
systems. Second, the relationship between the sign pattern of
the underlying graph structure of a system and the herdability
properties of the system is investigated. In doing so the notion of
sign herdability is introduced which captures classes of systems
whose sign pattern determines their herdability. We identify a
set of conditions, first on the sign pattern of the controllability
matrix and then on the underlying graph structure, that ensure
that the system is sign herdable.

I. Introduction
Controllability is a fundamental property of a dynamical

system; its study began with the work of Kalman et. al in
the 1960s [1] and recently has seen a renewed interest in
the study of networked systems [2] and complex networks
[3]. However there are cases where a system need not be
completely controllable to achieve desirable system outcomes:
for example if the system is stabilizable [4], if a desired end
point can be reached [5] or equivalently if it is transittable [6],
or if the system is target (output) controllable [7].
This paper discusses the behavior of a class of systems

in the case where complete controllability is not required
by considering the reachability of a specific set in the state
space, rather than the whole state space as is desired in
complete controllability. This approach builds on a history
of understanding dynamical systems through the geometry of
reachable spaces [8], [9] and is also distinct from the approach
when considering, for example, a predictive control problem
[10]; here the goal is to understand whether the system can
reach a specific set instead of understanding the reachable set
of the system.
To see why one might take into account the reachability of

a set, consider the case of a dynamical system where the state
1S. F. Ruf is with the Center for Complex Networks Research and

Department of Psychology, Northeastern University, Boston, MA 02115 and
can be reached at 858− 752− 3571 and ruf@gatech.edu
+ Corresponding author.
2 M. Egerstedt is with the School of Electrical and Computer Engineering,

Georgia Institute of Technology, Atlanta, GA 30332 and can be reached at
404− 894− 4468 and magnus@gatech.edu

3 J. S. Shamma is with Computer, Electrical and Mathematical
Science and Engineering Division, King Abdullah University of Sci-
ence and Technology (KAUST), Saudi Arabia, and can be reached at
jeff.shamma@kaust.edu.sa

? This work was partially supported by funding from KAUST

represents the percentage of a given community that will vote
for a political candidate and in which a political campaign can
apply advertising effort as a control signal. Here the political
campaign is successful if the state can be driven high enough
for the candidate to win, regardless of whether communities
can be made to vote at any specific percentage as would be
required by complete controllability.
In order to study systems that are not completely control-

lable but for which certain desirable control outcomes are still
achievable, this paper considers the set-based reachability con-
dition of herdability, which captures whether the components
of the state can be driven above a non-negative threshold.
This notion is called herdability to capture cases like herding
where the goal is not that each sheep be placed perfectly in
the meadow, but that the herd can make it into the pen. This
target set describes desired behavior in social and biological
sciences where many systems act based on thresholds, for
example collective social behavior [11], [12], the diffusion
of innovations [13], quorum sensing [14], and the firing of
a neuron [15].
More formally, a continuous time, linear time invariant (LTI)

system, referred to from now on simply as a linear system,

ẋ = Ax+Bu

where A ∈ Rn×n and B ∈ Rn×m, is completely herdable if
for any initial condition there exists a control input that makes
the state enter the set Hd = {x ∈ Rn : xi ≥ d} for all d ≥ 0,
where xi is the i-th element of x. Returning to the example of
voting in an election, where xi now represents the percentage
of community i that will vote for a candidate, one can see
that a sufficient condition to win the election is to reach the
set H.5 = {x ∈ Rn : (x)i ≥ .5}.
This paper begins by introducing theoretical results on the

herdability of a linear system, which are related to standard
results on the controllability of LTI systems [4]. After the
introduction of these results, this paper considers the herd-
ability of LTI systems based on the structure of the underlying
interaction graph, which encodes information about how states
and inputs interact with each other based on the system
matrices A and B. The relationship between a graph and a
dynamical system which evolves over that graph has previously
received considerable attention, see for example [2], [16].
The existing work can be roughly classified into two primary
approaches.
The first approach translates a specific graph structure to

system dynamics, which in many cases are consensus dy-
namics. Consensus dynamics are used in the context of multi



agent robotic and social systems [2], [17]. The controllability
of these consensus systems has been shown to be directly
related to the structure of the underlying graph [18]–[22].
System controllability is lost when nodes are symmetric with
respect to an input, where symmetry is discussed here in terms
of the automorphism structure of the graph [18], [19], [23].
Symmetry appears in the context of structural controllability as
a dilation [24]. In the case of herdability, it is possible to have
certain types of symmetry without degrading the herdability
of a system.

The second approach takes classes of linear dynamical
systems and maps them to a graph to discuss properties of
all systems that share the same graph structure. This approach
is known generally as qualitative systems analysis, and was
introduced to deal with the inherent uncertainty in system
parameters. Qualitative systems analysis considers structural
controllability, [24]–[26], its extension strong structural con-
trollability [27], and sign controllability [28]–[31]. Structural
controllability and strong structural controllability were intro-
duced to describes systems where an interaction between state
variables is known to be present but of unknown magnitude.
In structural controllability, a dynamical system is represented
by a graph in which each edge of the graph is assigned a
weight in R. A system is structurally controllable (strongly
structurally controllable) if and only if it is controllable for
almost all (all) weights that are assigned to the edges, which
is a property that can be verified directly from the structure
of the underlying graph. Structural controllability has seen
application in the study of complex networks, see [16] for
an extended discussion.

Sign controllability takes into account more information
than structural controllability, assuming that both the presence
and the sign of an interaction between state variables is
known. In a linear system, this translates into using the sign
pattern of the system matrices to determines controllability.
The application of sign pattern to understand controllability
builds on two sets of results from the economics and ecology
literature. The first is sign stability [32], [33], which asks
whether a matrix is stable based on its sign pattern. Sign
stability has been applied to understand biological systems,
for example [34]. The other is sign solvability [35]; which
asks, when solving the matrix equation Ax = b, whether the
sign pattern of x is uniquely determined by the sign pattern
of A and b.
Sign controllability has been considered with regard to the

structure of the various system matrices [28], [29] as well as
the sign pattern of the underlying graph [30]. To date, the
results on sign controllability have been limited. Results for
the case of a non-negative A matrix are considered in [28],
while [29] considers A matrices that have real eigenvalues.
Reference [30] extends to conditions based on the underlying
graph structure, however the results depend on a decision
problem which was shown to be NP-complete in [36].

Although there has not been success in applying the study
of sign controllability to complex networks, there is much
recent interest to understand system behavior based on sign
pattern. Signed graphs are used in the social networks context
to represent systems in which agents are both friends and

enemies [37], [38]. These networks have also been of recent
interest in the controls community [39], [40].
In this work, we consider the problem of determining

system herdability based on sign pattern for two reasons. First,
the applications of interest for herdability are those that are
inherently uncertain but where sign pattern can be reasonably
known, i.e. biological and social systems. Second, the results
of first half of the paper show that sign pattern can be used
to characterize the herdability of a system.
In that light, the second half of this paper shares the

approach of sign controllability in that the control properties of
classes of systems are considered based first on the sign pattern
of the controllability matrix and then on the sign pattern of the
underlying graph structure. Specifically this paper represents
the interaction structure of a linear system as a signed, directed
graph and explores when the sign pattern is sufficient to
determine system herdabiliy. In this light, the central problem
of the paper can be phrased in a social networks context as
follows: how does the grouping of friends and enemies in the
network relate to the ability to convince agents in the system
to hold a high opinion?
This paper presents theoretical underpinnings of the notion

of herdability and extends the conference paper [41] as follows:

• Basic theoretical results on the notion of herdability are
developed. These results take the form of conditions on
the range of the controllability matrix C as well as condi-
tions on the controllability grammian Wc, and the matrix
[A B], which were not included in the conference paper.
These results are extended to novel sufficient conditions
on the columns of the controllability matrix C.

• Conditions which ensure that the controllability matrix is
sign-definite are introduced.

• The basic characterization of herdability is extended to
conditions based on the underlying graph of the LTI
system. These include a necessary condition for herd-
ability, extensions of the novel sufficient conditions for
complete herdability, and a complete characterization
of the herdability properties of systems which have an
underlying graph which is a directed out branching.

The rest of the paper is organized as follows: Section II
introduces the basic theory of herdable system. This includes
the necessary definitions and necessary and sufficient condi-
tions for herdability. Sufficient conditions for herdability are
considered in Section II-B. In Section III a graph theoretic
characterization of the interaction structure of a linear system
is presented. Section IV considers graphical conditions for
herdability including a neccesary condition in Section IV-B,
sufficient conditions in Section IV-C and selecting a herdable
subset for graphs that are represented by a directed out-
branching in Section IV-A. The paper concludes in Section V.

A. Notation:

For a vector k ∈ Rn, ki refers to the i-th element of k. For
a matrix K ∈ Rn×m, Ki,: refers to the i-th row of K, K:,j

refers to the j-th column of K and Ki,j to the i, j-th element



of K. The cardinality of the set S is expressed as |S|. Let
sgn(·) denote the sign function which is defined as

sgn(x) =

 −1 for x < 0,
0 for x = 0,
1 for x > 0.

Let 0n ∈ Rn be a vector of zeros, 1n ∈ Rn be a vector of
ones, and 0n×m ∈ Rn×m be a matrix of zeros. Logical AND is
denoted by ∧ and ∨ denotes logical OR and Y denotes logical
EXCLUSIVE OR. A vector is balanced if it is the zero vector
or contains both positive and negative elements. A vector is
unisigned if its non-zero elements all have the same sign. A
unisigned vector is positive (negative) if all non-zero elements
have a positive (negative) sign.

II. Herdability Based On Sign Patterns
In this section, the basic theory of the herdability of contin-

uous time, linear dynamical systems is presented as well as a
characterization of herdability based on matrices which relate
to the reachability properties of a linear system. We begin with
the formal definition of herdability:

Definition 1. The state xi of a linear system is d-herdable
if ∀x(0) ∈ Rn , there exists a finite time tf and an input
u(t), t ∈ [0, tf ] such that xi(tf ) ≥ d under control input
u(t).

If the state is d-herdable for any d ≥ 0 it will be said to
be herdable. In the case of linear systems, d-herdability for
d > 0 and herdability are equivalent. This is because if there
exists an input u∗ which can drive the system to be larger than
some d∗ > 0 then that input can be scaled by some positive
constant so that the resulting state is element wise larger than
any d > 0. As the following discussion concerns itself with the
analysis of linear systems, we will refer only to the herdability
of states and where appropriate the herdability of the complete
linear system.

Definition 2. The state xi of a linear system is herdable if
∀x(0) ∈ Rn, h ≥ 0, there exists a finite time tf and an input
u(t), t ∈ [0, tf ] such that xi(tf ) ≥ h under control input
u(t).

Definition 3. A subset of states, X ⊆ {x1, x2, . . . , xn}, is
herdable if each individual state in X is herdable together, i.e.
if ∀x(0) ∈ Rn and h ≥ 0, there exists a finite time tf and an
input u(t), t ∈ [0, tf ] such that xi(tf ) ≥ h, ∀xi ∈ X under
control input u(t). A linear system is completely herdable if
all states in the system are herdable together.

For small systems with known dynamics, one could directly
characterize the reachable subspace. For the potential applica-
tion domains for herdability such characterizations become dif-
ficult. Instead of characterizing the whole reachable subspace,
we consider whether there is any part of it that intersects the
positive orthant. To do so will require some basic concepts
from the study of linear systems, specifically the relation be-
tween the reachable subspace and the controllability grammian
Wc and controllability matrix C. This section follows [4] but
any text on linear systems theory will do.

Definition 4. The reachable subspace R[0, t] of a linear
system is

R[0, t] ={
x1 ∈ Rn : ∃u : [0, t]→ Rm, x1 =

∫ t

0

eA(t−τ)Bu(τ)dτ

}
.

The controllability matrix C of a linear system is

C =
[
B,AB,A2B, . . . , An−1B

]
.

The Controllability Grammian on the time interval [0, t],
Wc[0, t], of a linear system is

Wc[0, t] =

∫ t

0

eAτBBT eA
T τdτ.

Lemma 1. (Theorem 11.5 [4])

R[0, t] = range(C) = range(Wc[0, t]).

Note that in linear systems, the reachable subspace does
not depend explicitly on the time interval used and as such
the time interval will be omitted for notational convenience.

Similar to the classical conditions for controllability, it is
possible to use C andWc to develop conditions for herdability.

Theorem 1. A set of states X ⊆ {x1, x2, . . . , xn} in a linear
system is herdable if and only if there is exists a vector k ∈
range(C) that satisfies ki > 0 for all xi ∈ X .

Proof. Define the set K to be the set that contains the positive
elements of k, K = {p | p > 0 ∧ ∃ xi such that ki = p}.
(k ∈ range(C) ⇒ X is herdable) Consider the problem of
controlling all states in the set X to be greater than some
lower threshold h ≥ 0 from an initial condition x(0). Suppose
there is a k ∈ range(C), that satisfies ki > 0 if xi ∈ X . As
k ∈ range(C), ∃ααα such that

Cααα = k.

If
γ >

maxj (h1n − eAtx(0))j
minK

and v = γααα then for all xi ∈ X it holds that

(Cv)i > (h1n − eAtx(0))i.

As the range of C is the same as the reachable subspace by
Lemma 1, ∃u(·) such that for all xi ∈ X

(eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ)i > h

then all states in X can be made larger that h and as h is
arbitrary the subset of states X is herdable.
(X is herdable ⇒ k ∈ range(C)) As the set of state nodes
X is herdable, each element of X can be made larger than
some h∗ > 0 from any initial condition. Consider the initial
condition x(0) = 0n. Then by the herdability of the set X
there exists a vector k∗ that satisfies k∗i > h∗ ∀xi ∈ X and
an input u(·) such that∫ t

0

eA(t−τ)Bu(τ)dτ = k∗



Then k∗i > 0 ∀xi ∈ X by the definition of h∗. By the defini-
tion of R[0, t], k∗ ∈ R[0, t] and consequently k∗ ∈ range(C)
by Lemma 1.

Corollary 1. A linear system is completely herdable if and
only if there exists an element-wise positive vector k ∈
range(C).

A similar statement can be made about the controllability
grammian Wc of a system, following directly from Lemma 1
and Theorem 1.

Corollary 2. A set of states X ⊆ {x1, x2, . . . , xn} in a linear
system is herdable if and only if there is exists a vector k ∈
range(Wc) that satisfies ki > 0 for all xi ∈ X . A linear
system is completely herdable if and only if there exists an
element-wise positive vector k ∈ range(Wc).

There is also a necessary condition for herdability which
arises based on the characterization of Theorem 1.

Theorem 2. If a linear system is completely herdable then
there exists an element-wise positive vector k ∈ range([A B]).

Proof. If a linear system is completely herdable, then by The-
orem 1, there is an element-wise positive vector k ∈ range(C).
As such there exists a y ∈ Rnm such that

Cy = k.

Dividing y into n subcomponents, with each yi ∈ Rm:

y =


y1

y2

...
yn


gives that

k = Cy
= By1 +ABy2 + · · ·+An−1Byn

= By1 +A(By2 +ABy3 + · · ·+An−2yn).

Then k ∈ range([A B]) as

k =
[
A B

] [By2 +ABy3 + · · ·+An−2yn
y1

]
.

Both Corollary 2 and Theorem 2 can provide important
information when considering large-scale systems with known
dynamics. The infinite horizon controllability grammian can
be calculated in linear time if the A matrix is stable, hence
Corollary 2 provides a tractable method to determine herd-
ability computationally. Theorem 2 can be used as an initial
check of system herdability when dealing with large systems
as there is virtually no computational overhead to generate the
matrix [A B]. As this paper seeks to understand herdability
based on the underlying graph structure, we will primarily
discuss the results based on the controllability matrix; which
will be shown later to have a natural interpretation based on
the underlying graph.

While this paper seeks to understand whether a system
is herdable under a fixed B, it’s interesting to note that

Theorem 2 could be used for designing the interaction with
the system via the selection of a B matrix. In the case that
the A matrix is such that there is no element-wise positive
k ∈ range(A) then B can be designed such that there is an
element-wise positive k ∈ range([A B]). However as The-
orem 2 is a necessary condition, other more computationally
expensive methods would be required to verify that the system
is actually herdable.
If the system dynamics are known, determining whether

there is some positive unisigned vector k in the range of
a given matrix of interest, be it C, Wc or [A B], can be
done simply by finding a basis for the matrix. However as
the scale of the system increases and the individual system
parameters become uncertain, determining the element-wise
positive vector k which shows that the system is herdable
is non-trivial. Many of the results that will follow provide
sufficient conditions for existence of a positive unisigned k.

A. Relation to Sign Solvability
Before preceding with the characterization of herdability, it’s

worth introducing concepts from the study on sign solvability
[35]. The matrix equation Ax = b is sign solvable if for all
matrices A and b with the same sign pattern, a solution x
exists and all solutions have the same sign pattern. The matrix
equation Ax = b is strongly sign solvable if it is solvable and
x must be elementwise nonzero. Finally, the matrix equation
Ax = b is sign inconsistent if for all A and b with the same
sign pattern no solution x exists such that Ax = b [42]. These
definitions can be translated to conditions for herdability.

Proposition 1. If Cx = 1n is sign inconsistent then (A,B)
is not completely herdable. If Cx = 1n is sign solvable or
strongly sign solvable then (A,B) is completely herdable.

Verifying these conditions involves studying L-matrices and
S-matrices. An L-matrix has linearly independent rows based
on sign pattern and an S-matrix, Ŝ has an elementwise positive
vector k ∈ null(Ŝ). If [C 1n] is an L-matrix then Cx = 1n is
sign inconsistent [42]. Unfortunately verifying that a matrix is
an L-matrix is NP-complete [36].
If [C − 1n] is an S-matrix then Cx = 1n is strongly sign

solvable. The theory for S-matrices was developed for matrices
Ŝ ∈ Rn×n+1 which implies that these methods can only be
used to check herdability in the case that m = 1 and C ∈
Rn×n. In the single input case, strong sign solvability can be
verified in polynomial time [43].
While these conditions based on sign solvability are suffi-

cient for complete herdability, they are often overly restrictive.
The conditions presented in the remainder of this paper for
herdability consider whether a solution exists to Cx = k,
for some elementwise positive k without the restriction that
the sign pattern of such solutions be uniquely determined. It’s
also worth noting that the approaches of sign solvability often
implicitly involve verifying that C is sign non singular, i.e. that
the system is sign controllable.

B. Sufficient Conditions for Herdability
The section provides a number of sufficient conditions for

herdability based on the structure of the controllability matrix



C and controllability grammian Wc.
To do so requires the following set of definitions from the

study of qualitative systems [35], which we recall from Section
I-A. A vector is balanced if it is the zero vector or contains
both positive and negative elements. A vector is unisigned if its
non-zero elements all have the same sign. A unisigned vector
is positive (negative) if all non-zero elements have a positive
(negative) sign.

Definition 5. A state xi in the system is strictly herdable, if
∃k ∈ R[0, t] such that k is unisigned and ki 6= 0.A state xi
is loosely herdable if all vectors k ∈ R[0, t] such that ki 6= 0
are balanced.

The presence of a loosely herdable node can be verified by
showing that Cx = 1n is sign inconsistent, which as mentioned
previously is NP-Complete. As such this section focuses on
verifying that a state is strictly herdable based on the sign
pattern of the controllability matrix C.

Lemma 2. Let S ⊆ {x1, x2, . . . , xn} be the subset of states
such that for all xi ∈ S there exists a unisigned column of C
with a non-zero element at position i. Each element of S is
strictly herdable.

Proof. By the definition of S, for node xis ∈ S there exists a
js such that (C)is,js 6= 0 and each non-zero element of (C):,js ,
has the same sign. If (C)is,js > 0, then (C):,js ∈ range(C) and
the node xis is strictly herdable. Alternatively if (C)is,js < 0,
then the positive unisigned vector −(C):,js ∈ range(C) and
the node xis is strictly herdable.

Let D = {x1, x2, . . . , xn}\S . If xl ∈ D then for all j such
that (C)l,j 6= 0 the column vector (C):,j is balanced. This
holds because if this were not true then xl would be in S. We
introduce the following definition to classify states in D.

Definition 6. The state xz balances state xl at j if it has a
different sign than xl in the column (C):,j and favors state xl
at j if it has the same sign as xl in the column (C):,j .

Lemma 3. If ∀xl ∈ D there exists a j such that xl is balanced
only by strictly herdable nodes at j then xl is strictly herdable.

Proof. Let Ŝ be the set of nodes which balance xl at j, which
by assumption are all strictly herdable. By the definition of
strictly herdable nodes, for each xs ∈ Ŝ there exists a vector
vs ∈ range(C) such that vss > 0 and each non-zero element
of the vector vs has the same sign. Consider the set of vectors
S = {{vs}xs∈Ŝ ,b} where b = C:,j , the vector where xl is
opposed by the elements of Ŝ. Then there exists a collection of
weights αs such that ŝ =

∑
xs∈Ŝ αsv

s + sgn(bl)b is a vector
which is positive at xl, at each node that favors xl at j and at
each node xs ∈ Ŝ. As ŝ ∈ range(C), l is strictly herdable.

Theorem 3 below lays the foundation for using Lemma 3 to
discuss system herdability.

Theorem 3. All states xi ∈ {x1, x2, . . . , xn} are strictly
herdable if and only if the system is completely herdable.

Proof. (Sufficiency) As each state xi ∈ {x1, x2, . . . , xn} is
strictly herdable, there exists a vector ki ∈ range(C) which is
element-wise non-negative and kii > 0. Then the element wise
positive k =

∑
i k
i ∈ range(C) and the system is completely

herdable.
(Necessity) As the system is completely herdable, there is an
element-wise positive vector k ∈ range(C). Then for each
state xi ∈ {x1, x2, . . . , xn} ki > 0 and the other elements are
nonnegative, so state xi is strictly herdable.

These results provide a way to check for the herdability
of a system efficiently from the controllability matrix, simply
by inspecting the columns of C. A similar set of results hold
for the columns of the controllability grammian Wc though
they are not described here. As will be seen shortly, the
controllability matrix has the advantage of being related to
the underlying graph structure of the network, which presents
further opportunities for determining system herdability.

III. Characterizing Dynamical Systems via Graphs
This section presents a characterization of a dynamical

system based on the signed, directed graph which describes the
interaction structure of the dynamical system. This characteri-
zation will allow an exploration of the relationship between the
ability to control a system and the structure of the interactions
between the states as well as the interaction between the inputs
and the states of the system. In this section, it is shown that a
property known as structural balance is sufficient to ensure that
all systems with the same sign structure have a controllability
matrix with the same sign pattern.
A linear system can be represented by three graphs, each

of which contains different levels of information about the
interactions between the states and inputs. The first is an un-
weighted, unsigned directed graph G = (V, E), where V is the
vertex (equivalently node) set and E is the edge set. This graph
is commonly used in the study of structural controllability to
represent a class of systems which share the same structure.
The second graph is a signed graph Gs = (V, E , s(·)) where
s(·) accepts an edge and returns a label in {+1,−1}, which
is the sign of the edge. This signed graph represents a class
of systems whose edge weights have the same sign pattern.
Similarly this representation was used in the study of sign
controllability to represent a class of systems which share
the same sign structure. This graph is used when considering
structural balance [44], [45]. The third graph is a weighted
graph Gw = (V, E , w(·)) where w(·) accepts an edge and
returns a weight in R. The weighted graph is the representation
of a single system.
As will be seen later, the weighted graph Gw can be

directly related to the controllability matrix C and therefore the
controllability properties of the system. The following sections
focus on the interplay between Gs and Gw, in that the presented
structural results are cases where the results for the herdability
of a system based on the weighted Gw can be extended to all
signed graphs with the same sign structure Gs regardless of
the weights of the edges in Gw, a notion similar to strong
structural controllability and sign controllability. This notion
is called sign herdability.



Definition 7. A system is completely sign herdable if all
systems which share the same sign structure Gs are completely
herdable.

In order to show sign herdability, we will consider when all
systems which share the same sign structure Gs give rise to
controllability matrix C or grammianWc which have the same
sign pattern.

Definition 8. A matrix is sign definite if all systems which
share the same sign structure Gs give rise to the same sign
structure for that matrix.

The formal definition of the graphs follows. The set of
vertices satisfies V = Vx ∪ Vu, Vx ∩ Vu = ∅, where
Vx = {vx1, vx2, . . . , vxn} is a set of vertices representing the
states of the system and Vu = {vu1, vu2, . . . , vum} is a set
of nodes representing the inputs to the system. An arbitrary
element of V will be referred to by vi for some index i, as will
arbitrary elements vxi ∈ Vx and vui ∈ Vu. The state xi will
now be interchangeably referred to by the node vxi as will the
input j and the node vuj .
The edge set satisfies E = Ex ∪ Eu where the edges in

Ex represent interactions between states of the system, while
the edges in Eu represent interactions between the inputs and
the states. Denote the directed edge from vi to vj as (vi, vj).
Then (vxi, vxj) ∈ Ex ⇔ A(j, i) 6= 0 and (vui, vxj) ∈ Eu ⇔
B(j, i) 6= 0. An arbitrary element of E will be referred to by
ei for some index i. By partitioning the node and edges sets, it
is possible to define the state subgraph Gx = (Vx, Ex), which
captures only interactions between states as well as the input
subgraph Gu = (V, Eu) which captures interactions from the
inputs to the states. Note that the input nodes do not interact
with each other nor is it possible in the present discussion to
have an edge of the form (vxi, vuj), which would imply that
the states influences the evolution of the input.

When considering the signed graph Gs, s((vxi, vxj)) =
sgn(A(j, i)) and s((vui, vxj)) = sgn(B(j, i)). Similarly for
Gw, w((vxi, vxj)) = A(j, i) and w((vui, vxj)) = B(j, i).
As an example, consider the system

ẋ =

−1 0 0
5 0 2
4 −3 0

+

0 −2
2 0
0 3

u (1)

which is translated into Gs and Gw in Figure 1.
A semi-walk from v0 to vk, πs(v0, vk), is a collec-

tion of nodes v0, v1, v2 . . . , vk−1, vk ∈ V , as well as k
edges which satisfy (vi−1, vi) ∈ E ∨ (vi, vi−1) ∈ E . For
convenience, the semi-walk can be represented by πs =
v0, ê1, v1, ê2, v2 . . . , vk−1, êk, vk where êi is the element of
{(vi−1, vi), (vi, vi−1)} that is contained in E . Like a walk, the
sign of a semi-walk follows s(πs) =

∏
êi∈πs

s(êi) and the
weight of a semi-walk follows w(πs) =

∏
êi∈πs

w(êi). A
semi-walk is a semi-path if the nodes of the semi-walk are
distinct and a semi-walk is a semi-cycle if the first and last
element of the semi-walk are the same.

Definition 9. A graph is structurally balanced if all semi-
cycles have a positive sign [44].

u2u1

x3x2

x1

−

++

−

+

−
++

(a)

u2u1

x3x2

x1

−2

32

−1

2

−3
54

(b)

Fig. 1: The graphs of the system in Equation (1). 1a: Gs the
signed graph. 1b: Gw the weighted graph

Structural balance has been shown to be related to the
controllability of signed consensus dynamics evolving over a
network [40]. While no explicit relation between structural
balance and herdability is shown in this paper, there is a
relationship between structural balance and the controllability
matrix C which will be explored in further depth later in the
paper.
To begin classifying a linear system based on the signed

graph Gs, we define two basic types of sets. Let N j
d be the

set of nodes reachable from vuj via at least one negative walk
of length d. Similarly Pjd is the set of nodes reachable from
vuj through at least one positive walk of length d. If there is
only one input to the system, the superscript will be dropped
to refer to Nd and Pd instead of N 1

d and P1
d . In Figure 1,

N 1
1 = {∅}, N 1

2 = {x2}, P1
1 = {x2}, P1

2 = {∅} and so on.
The sets Pjd and N j

d can provide sufficient information to
determine the sign-herdability of a linear system. Consider the
total weight of positively signed walks from input vuj to node
vxi with length d,

ρ+j→i,d =
∑

π∈θ+d (vuj ,vxi)

w(π),

where θ+d (vuj , vxi) is the set of positive walks of length d from
vuj to vxi. From the definition of Pjd , it holds that ρ

+
j→i,d > 0

if vxi ∈ Pjd and 0 else. Similarly the total weight of negatively
signed walks from input vuj to node vxi with length d is

ρ−j→i,d =
∑

π∈θ−d (vuj ,vxi)

w(π),

where θ−d (vuj , vxi) is the set of negative walks of length d
from vuj to vxi and it follows that ρ−j→i,d < 0 if vxi ∈ N j

d

and 0 else. The weight of all walks from input vuj of length
d is

ρj→i,d = ρ+j→i,d + ρ−j→i,d.



We will be interested in cases where the sign of ρj→i,d is
fixed across all possible weights on the edges, as this gives
rise to a sign definite controllability matrix. This occurs if all
paths at a certain distance are of the same sign.

Proposition 2. If vxi ∈ Pjd ∧ vxi /∈ N
j
d then ρj→i,d > 0.

If vxi ∈ N j
d ∧ vxi /∈ P

j
d then ρj→i,d < 0. Further if vxk ∈

N j
d ∪ P

j
d ∧ vxk /∈ N

j
d ∩ P

j
d then ρj→i,d 6= 0.

Proof. If vxi ∈ Pjd ∧ vxi /∈ N
j
d , then ρ

−
j→i,d = 0 and ρj→i,d

is manifestly positive. The case vxi ∈ N j
d ∧ vxi /∈ P

j
d follows

similarly.
To show that vxk ∈ N j

d ∪P
j
d∧vxk /∈ N

j
d ∩P

j
d then ρj→i,d 6=

0, suppose the contrary. Then

ρj→k,d = 0

ρ+j→k,d + ρ−j→k,d = 0.

As vxk ∈ N j
d ∪ P

j
d it holds that

ρ+j→k,d > 0, ρ−j→k,d < 0

which implies that

vxi ∈ Pjd , vxi ∈ N
j
d

vxi ∈ Pjd ∩N
j
d

It is possible to relate ρj→i,d with the system matrices
A,B and ultimately the controllability properties of the sys-
tem. Define a weighted adjacency matrix Ãw for Gwx , where
(Ãw)i,j = w((vxj , vxi)) if (vxj , vxi) ∈ Ex and (Ãw)i,j = 0
if not. Define a weighted adjacency matrix B̃w for Gwu , where
(B̃w)i,j = w((vuj , vxi)) if (vuj , vxi) ∈ Eu and (B̃w)i,j = 0
if not. Note that from the definition of the weight of an edge,
Ãw = A and B̃w = B. Then (Ad−1B)i,j is the sum of the
weight of all walks of length d from vuj to vxi, which can
be used to show that C is determined by walks on Gw which
have lengths from 1 to n. More formally:

Lemma 4. Ci,(m(d−1)+j) = ρj→i,d.

Proof. We first show that (Ad−1B)i,j = ρj→i,d, via proof by
induction on d. Consider the case of d = 1. By the definition
of the weight of an edge:

Bi,j = ρj→i,1.

Consider the weight of all walks of length d from an input vuj
to a state node vxi. By assumption, (Ad−2B)i,j = ρj→i,d−1.
As Ad−1B = AAd−2B, it follows that

(Ad−1B)i,j =

n∑
k=1

(A)i,kρj→k,d−1.

As a walk of length d is the concatenation of a walk of length
d− 1 and a walk of length 1, it follows from the definition of
the weight of a walk that

n∑
k=1

Ai,kρj→k,d−1 = ρj→i,d.

The result follows directly from the fact that Ci,(m(d−1)+j) =
(Ad−1B)i,j .

The definition of the matrix exponential, eA =
∑∞
z=0

1
k!A

k,
and the form of the controllability grammian shows that the
controllability grammian is related to all possible paths in the
underlying graph of A.
To conclude this section, conditions on the graph which

produce sign definite controllability matrix and controllability
grammian are discussed.

Theorem 4. If ∀xi ∈ {x1, x2, . . . , xn} it holds that for each d
and j such that Ci,m∗(d−1)+j 6= 0, xi satisfies vxi ∈ Pjd∧vxi /∈
N j
d or vxi ∈ N j

d ∧ vxi /∈ P
j
d , then the controllability matrix is

sign definite.

Proof. If the condition of the theorem holds, then every non-
zero element of C is associated only with paths of the same
sign by Proposition 2 and as such will have always have the
same sign no matter the weights on the graphs.

If the underlying graph of the system satisfies Theorem 4,
the controllability matrix C will always have the same sign
pattern, however the condition of the theorem would require
checking all paths of length 1 to n between input and state
nodes. It is possible to show a stronger condition more easily.
Consider the following:

Theorem 5. If the system graph is structurally balanced, then
the controllability matrix is sign definite.

Proof. Structural balance implies that the paths between an
pair of nodes have the same sign [46], which implies that
vxk ∈ N j

d ∪P
j
d∧vxk /∈ N

j
d ∩P

j
d for every non-zero element of

C and (Ad−1B)kj must have a unique sign. If not, there exists
an xi such that there is a d and j where vxi ∈ Pjd ∧vxi ∈ N

j
d .

This implies there are one or more positive paths of length d
from j and one or more negative paths of length d from j.
Without loss of generality, consider one positive path and one
negative path from input uj to node xi. These paths form a
semi-cycle in the graph. One of the paths is negative and must
have an odd number of negative edges. The other is positive
and must have an even number of negative edges. As such the
semi-cycle must have an odd number of negative edges, i.e.
the semi-cycle must have negative weight, which implies that
the graph is not structurally balanced.

Theorem 5 also shows that if the graph is structurally
balanced then there can be no path cancellation such that
ρj→i,d 6= 0 by Proposition 2. However structural balance is not
a necessary condition for a sign definite controllability matrix.
Consider the graph in Figure 2. Consider the node vx2, which
is in N1 and P2 but not in P1 and N2. As such it satisfies the
condition of Theorem 4 and the controllability matrix C will
always have the same sign, however the graph as a whole is
not structurally balanced. As can be seen, structural balance
ignores the lengths of the paths which connect an input to a
state node which are important for determining herdability.
However structural balance can be determined in linear

time [47], which implies that Theorem 5 makes it possible
to characterize the sign herdability of a system from the
controllability matrix with little extra computational cost.
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Fig. 2: An example of a graph which will always have the same
sign pattern for the controllability matrix but is not structurally
balanced.

IV. Graphical Conditions for Complete Herdability
This section considers the relationship between graph struc-

ture and herdability in a number of different contexts. First
herdability is shown for the case where the underlying graph
is a directed outbranching, then a necessary condition for com-
plete herdability is examined before developing a number of
sufficient conditions for complete herdability. These sufficient
conditions extend the characterization of Section II-B.

A. Directed Out-branchings
This section considers herdability in the special case of

a system which has an underlying graph which is a rooted
out-branching. In such systems, it is possible to completely
characterize the set of nodes that can be herded together, Hu.

A directed graph, Ĝ = (V̂, Ê) is a rooted out-branching
if it has a root node vi ∈ V̂ such that for every other node
vj ∈ V̂ there is a single directed walk from vi to vj . The
case considered here is that of a single input, input rooted
out-branching, which means that every node vxi ∈ V̂x has a
single in-bound walk from the single input vu. The unique
walk from vu to vxi in the input-rooted out-branching will be
referred to as πt(vu, vxi). Consider the maximum walk length
between vu and a state node, which is

dmax = max
vxi∈V̂x

len(πt(vu, vxi)).

Theorem 6. In an input rooted, out-branching, Hu follows

Hu =

dmax⋃
d=1

Xd,

where Xd ∈ {Pd,Nd, ∅}.

Proof. Consider the ability to herd a node vxi and assume that
len(πt(vu, vxi)) = di. As there is only one walk from vu to
vxi it holds that (C)i,d = 0, ∀d 6= di ∈ {1, 2, . . . , dmax}, and
(C)i,di 6= 0. Further vxi is either in Pd or in Nd but can not be
in both as there is only one path to vxi. Then by Proposition 2
and Lemma 4 if vxi is in Pdi , ρu→i,d > 0 and consequently
(C)i,di > 0 or if vxi is in Ndi , ρu→i,d < 0 and (C)i,di < 0.
Then it follows that (C):,di uniquely determines the abil-

ity to herd all nodes at distance di. Consider the choice

of the constant αdi. If αdi = 1 then ((C):,diαdi)i >
0, ∀i such that vxi ∈ Pdi and Pdi is herdable by Theorem 1.
If αdi = −1 then ((C):,diαdi)j > 0, ∀i such that vxi ∈ Ndi
and Ndi is herdable by Theorem 1. Finally if αdi = 0
then (C):,diαdi = 0n and no nodes are herded. Then by the
appropriate choice of αdi the set of nodes that can be herded
at distance di from u, Xdi must be one of {Pd,Nd, ∅}.
Construct a vector ααα ∈ Rn where ∀d ∈ {1, 2, . . . , dmax}

αααd =


1 so that Xd = Pd,
−1 so that Xd = Nd,
0 so that Xd = ∅,

and where the remaining n − dmax elements are 0. Then Cααα
shows the herdability of the set of nodes

⋃dmax

d=1 Xd.

Corollary 3. The maximal collection of nodes, H∗u, that can
be herded in a input rooted out-branching satisfies

|H∗u| =
dmax∑
l=1

max(|Nl|, |Pl|).

In the case of an single input, input connectable, directed
out-branching where ∀d ∈ {1, 2, . . . , dmax}, Nd = ∅YPd = ∅,
Corollary 3 shows that |H∗u| = n, or equivalently that the
system is completely herdable. Figure 3 shows an example of
selecting the set of nodes that can be herded in an input rooted,
out-branching.

u

x1 x2

x5 x6x3 x4

− +

− +− +

Fig. 3: An example of an input rooted out-branching

The graph in Figure 3 can be translated into the following
class of systems:

ẋ =


0 0 0 0 0 0
0 0 0 0 0 0
−α1 0 0 0 0 0
α2 0 0 0 0 0
0 −α3 0 0 0 0
0 α4 0 0 0 0

x+


−β1
β2
0
0
0
0

u



where α1, α2, α3, α4, β1, β2 > 0. The system has a controlla-
bility matrix:

C =


−β1 0 0 0 0 0
β2 0 0 0 0 0
0 α1β1 0 0 0 0
0 −α2β1 0 0 0 0
0 −α3β2 0 0 0 0
0 α4β2 0 0 0 0


where

range(C) = span






−β1
β2
0
0
0
0

 ,


0
0

α1β1
−α2β1
−α3β2
α4β2






As such the possible sets of herded nodes are
{1, 3, 6}, {1, 4, 5}, {2, 3, 6}, {2, 4, 5}.
The result of Theorem 6 is similar in nature to

the k-walk controllability theory [7]. The k-walk the-
ory shows that for each d ∈ {1, 2, . . . , dmax} one node
can be controlled. In the graph given in Figure 3,
the possible sets of nodes that can be controlled are
{1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 4}{2, 5}, {2, 6}. As a
consequence of the k-walk theory, the maximal collection of
nodes that are controlled in a directed out-branching from
input vu, C∗u, satisfies

|C∗u| = dmax.

In the case of herding a network, Corollary 3 shows that the
maximal collection of nodes, H∗u, will satisfy

dmax ≤ |H∗u| ≤ n.

Therefore in the worst case, the same number of nodes can
be herded as can be controlled and depending on the network
structure many more nodes can be herded.

B. A Necessary Condition for Complete Herdability
This section shows how graph structure and system herdabil-

ity are related by providing a necessary condition for complete
herdability of a system known as input connectability. Note
that input connectability is also a necessary condition for
structural controllability [24] and sign controllability [30].

Definition 10. A graph is input connectable (equivalently,
accessible) if ⋃

vuj∈Vu

Rj = Vx,

where Rj is the set of nodes reachable from vuj: Rj = {vxi ∈
Vx | vuj → vxi}.

If a single node is not accessible then the system is not
completely herdable.

Theorem 7. If a system is completely herdable, then it is input
connectable.

Proof. Suppose that there exists a node vxi such that vxi /∈⋃
j Rj and as such there is no walk from an input to vxi,

i.e. the system is not input connectable. If there is no walk to
vxi, then (C)i,: = 0n by Lemma 4 and the node will not
be herdable. To see why consider making x(t) ≥ h from
an initial state x(0) = 0n. As ∀j (C)i,j = 0, it holds that
∀z ∈ range(C), zi = 0 and by Lemma 1 for any reachable
x(t) ∀t ≥ 0, xi(t) = 0 and state xi is not herdable. As such,
the system is not completely herdable.

As was just seen in the case of the directed out-branching
in Section IV-A, the underlying sign pattern influences herd-
ability and as such input connectability is only a necessary
condition. In the special case that the system is positive, input
connectability is a sufficient condition as well.

Theorem 8. A positive linear system is completely herdable
if and only if it is input connectable.

Proof. (Sufficiency) By Theorem 8 of [48], an input con-
nectable, positive linear system is excitable. Then there is an
element-wise positive vector in the reachable subspace, which
is also the range of the controllability matrix by Lemma 1.
Then by Corollary 1, the system is completely herdable.
(Necessity) Follows from Theorem 7.

Theorem 8 is important for the application of herdability as
many biological and social systems are described by positive
systems [48].
Another possibility is that for a given sign pattern, paths

cancel in the graph which would prevent an input connectible
graph from being completely herdable. As discussed at the end
of Section III, if the underlying graph is structurally balanced
then such cancellations can not occur. We conjecture that
structural balance and accessibility may form the basis for a
sufficient condition for herdability.

C. Sufficient Graph Conditions for Sign Herdability
This section will now consider the sufficient condition of

Section II-B in light of the characterization of the controlla-
bility matrix given in Section III. The following Theorems
provide a case where the composition of the sets Pjd and
N j
d uniquely determines the sign of the columns of the

controllability matrix and in turn the herdability of the graph,
i.e. one is able to show the sign-herdability of the system.
These conditions are also less stringent than the requirements
for a sign definite C as they only ask that certain columns of
the C have a fixed sign pattern.

Definition 11. A node is sign strictly herdable if it is strictly
herdable for all graphs with the same sign pattern.

Lemma 5. If for the node vxi there exists a distance d and
an input vuj such that vxi ∈ N j

d ∪P
j
d and N j

d = ∅ YPjd = ∅,
where Y denotes exclusive OR, it is sign strictly herdable.

Proof. Consider the herdability of a node vxi which satisfies
vxi ∈ N ji

di ∪P
ji

di and N ji

di = ∅YPj
i

di = ∅ for some di and vuji .
The fact that N ji

di = ∅ YPj
i

di = ∅ implies that N ji

di ∩P
ji

di = ∅,
and as such it must be that vxi ∈ N ji

di ∪P
ji

di and vxi /∈ N ji

di ∩
Pj

i

di .



From Lemma 4 and Proposition 2, this implies
(C)i,m(di−1)+ji 6= 0. Additionally, as N ji

di = ∅ Y Pj
i

di = ∅,
Proposition 2 show that all nonzero elements of
(C):,m(di−1)+ji have the same sign and that the sign
does not depend on the edge weights. Therefore for all graphs
with the same sign pattern, the node is contained in S, the
set of nodes for which there exists a unisigned column of C.
Then by Lemma 2 each node is sign strictly herdable.

For simple graph structures, the condition of Lemma 5 can
be easily shown to be satisfied. For example in the case of
directed outbranching, the condition holds if the columns of
A and B are unisigned. which corresponds to each layer of
the out branching having connections of the same sign.

Theorem 9. If for each vxi ∈ Vx there exists a distance d and
an input vuj such that vxi ∈ N j

d ∪P
j
d and N j

d = ∅ YPjd = ∅,
then the system is completely sign herdable.

Proof. By Lemma 5 each node is sign strictly herdable and
the system is completely sign herdable by Theorem 3.

Theorem 9 is an extension of Lemma 2 to the sign structure
of the network. Consider the following definition which allows
the extension of Lemma 3.

Definition 12. A node vxi is said to be sign balanced if there
exists a distance d and an input vuj such that vxi ∈ N j

d ∪P
j
d ,

vxi /∈ N j
d ∩ P

j
d , and all nodes that balance vxi at distance d

from an input vuj are sign strictly herdable.

Theorem 10. If all nodes are sign balanced then the system
is completely sign herdable.

Proof. As for each vxi there exists a distance d and an input
vuj such that vxi ∈ N j

d ∪ P
j
d , vxi /∈ N

j
d ∩ P

j
d , there is a

column of C whose sign with respect to vxi is always consistent
regardless of the weight of the edges in the walks that connect
the input vuj and vxi. As it is balanced by sign strictly herdable
nodes, node vxi is sign strictly herdable. As all nodes are
strictly sign herdable then the whole system is sign herdable
by Theorem 3.

Theorem 9 and Theorem 10, as well as Lemmas 2 and 3
(their counterpart based on the controllability matrix C), pro-
vide sufficient conditions to verify that a node is strictly herd-
able. However as they are only sufficient there are completely
herdable systems which can not be identified by verifying
the conditions of Lemmas 2 and 3 and Theorems 9 and 10.
Figure 4 shows a simple example.

V. Conclusion
In this paper, the basic theory of herdable systems was pre-

sented. The definition of herdability was shown to translate to
simple conditions based on three matrices: the controllability
grammian Wc, the controllability matrix C, and the matrix
[A B]. A number of sufficient conditions where shown which
could be used to show herdability of a system by inspecting
the columns of each of the aforementioned matrices.

The characterization of herdability based on the controlla-
bility matrix was extended to consider the underlying graph

u

x1 x2 x3

+
+

−

++

+

Fig. 4: An example of a completely herdable graph which can
not be identified by inspecting the columns of C nor the sets
N j
d and Pjd

of the dynamical system. It was shown that a certain loss
of symmetry, as shown by a balanced vector in the range
of the controllability subspace, ensures that a system is no
longer completely herdable. Additionally it was shown that as
herdability is only dependent on the sign of an link between
two state nodes, any characterization of herdability based on
the controllability matrix can be extended to a class of systems
with the same sign pattern if it can shown that the sign of the
columns of the controllability matrix do not depend on the
underlying edge weights.
The results on the sign herdability of linear systems depend

on the characterization of the sets N j
d and Pjd . In the case

where the underlying graph of A is structurally balanced these
need not be explicitly calculated as the sign herdability of
the system can be determined directly from the controllability
matrix C. In the case where the underlying graph is not
structurally balanced the sets N j

d and Pjd must be determined
from the graph structure. Unfortunately determining N j

d and
Pjd via graph traversal involves considering all paths between
an input node and a state node in the graph, of which there
are potentially an exponential number.
In the case where A has an underlying graph which is a

directed acyclic graph then these sets can be determined in
linear time. If A is not acyclic then there is a possibility that
the time complexity of the algorithm grows exponentially in
the number of state nodes. As such the presented results, in
terms of practical implementation, are currently best suited for
graphs which are acyclic or sufficiently close to acyclic that
the sets N j

d and Pjd can be calculated.
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