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Abstract— In this paper, we extend a viral model for product
adoption which takes into account how an agent’s (or subpop-
ulation’s) opinion affects the decision to adopt a product or
not. Here the coupled adoption opinion model considers the
case where the opinion dynamic evolves over a signed network,
which captures antagonistic interactions between agents. These
signed networks capture a more realistic class of opinion
behaviors and lead to a rich set of adoption behaviors for the
coupled model. The equilibria of this model are characterized
and some stability properties of these equilibria are discussed.
Further behavior of the coupled model is studied via simulation.

I. INTRODUCTION

Innovative technologies have repeatedly changed the
world, from the printing press to the steam engine, to the
transistor to the internet. The adoption of these technologies,
as well as general adoption behavior, has been widely
studied; particularly in sociology [4]–[6], [13], [30] and its
sub-field, the diffusion of innovations [27], [33].

Models for the spread of a product often attempt to
capture one of two mechanisms for its transmission. The first
mechanism is contact with a product user. This interaction
is often modeled as an epidemic, where the product spreads
from one adopter of the product to a network neighbor who
is not an adopter, i.e. the network neighbor subsequently
adopts the product with some probability [3], [18], [34]. The
second type of interaction is social reinforcement, commonly
modeled by threshold models [13], [30], [33]. In threshold
models, each agent has a threshold value, so that when the
number of users in the neighborhood of the agent exceeds
that value, the agent will adopt the product. Adoption that re-
quires social reinforcement is often associated with adoption
that involves some element of risk [4], which would include
the products whose adoption is modeled in this paper.

In this paper, we use both mechanisms, following the
approach of [28], [29], opting to explicitly model both the
contact process, here an SIS epidemic model, and the social
reinforcement, here an opinion dynamic. Both the SIS and
opinion dynamic models have recently been of interest to the
controls community [11], [23], [26], where the emphasis has
been on analysis of their limiting behavior. For SIS epidemic
models, this analysis has been based on network topology
[9], [34], while for opinion dynamic models the analysis
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is often based on how different opinion dynamics change
behavior. The study of opinion dynamic models has explored
the consensus algorithms of Abelson and DeGroot [1], [7],
the bounded confidence or Hegselmann-Krause model [16],
and the signed consensus, or Altafini, model [2].

The work in this paper builds on past attempts to model
these two adoption mechanisms simultaneously. Kalish ex-
tended a canonical epidemic model of product spread by Bass
[3] by incorporating advertising in the dynamics. Similar to
early SIS models such as [19], Bass’ and Kalish’s approaches
assume a trivial underlying graph structure and model the
system with only two differential equations, aggregating the
population into groups. These simple models have been
extended to allow a consumer’s opinion about the quality
of a product to affect their decision to purchase or adopt
it. In [22], Martins et al. propose the Continuous Opinion
Discrete Action (CODA) model which captures discrete
product adoption with Bayesian opinion updates. However,
in the CODA model, the Bayesian opinion update does not
depend on any opinions, but only on the adoption actions of
an agent’s neighbors. In the model considered here, however,
an agent’s opinion updates based on its neighbors’ opinions
and its own adoption behavior and opinion.

As noted previously, the approach here follows that of
[29] in which the authors proposed coupling several different
opinion dynamic models with an SIS spread model to capture
adoption behavior, concluding that the choice of opinion
dynamic drives the outcome of the coupled system. Here we
focus on a specific opinion dynamic, the signed consensus
model, and seek to understand the effect of negative edges in
the opinion graph on the spread of a product. These negative
edges are typically conceptualized as interactions with an
adversary in a social network [8], but can reflect any negative
appraisal or opinion. Negative appraisal has been treated in
the marking literature as oppositional brand loyalty [24],
[25], in which an adopter defines themself not just by what
they are adopting but also by what they are not adopting.
For example, identifying as a Coke drinker means that one
will not drink Pepsi. The signed consensus model has been
considered in [29], but only in simulation.

In this paper, we characterize the equilibria of the viral
model for production adoption coupled with the signed opin-
ion dynamics and their stability properties. These equilibria
are studied both analytically and numerically, and we show
that antagonistic social relationships in the opinion dynamics
have a strong effect on the adoption behavior.

Notation: Given a vector function of time x(t), ẋ(t)
indicates the time-derivative. The time dependency is sup-
pressed where it is clear from context, to simplify notation.



The notation diag(·) refers to a diagonal matrix with the
vector argument on the diagonal. The notation ∅ indicates
the empty set. The N -dimensional vectors of zeros and ones
are 0N and 1N , respectively. We also define .5N = .5× 1N
and −.5N = −.5×1N . The matrix A formed from elements
aij for i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , N} is denoted
by A = [aij ]. A matrix A ∈ RN×N is diagonally dominant if
∀i ∈ {1, 2, . . . , N} it holds that |Aii| ≥

∑
j 6=i |Aij |; strictly

diagonally dominant means the inequality is strict.

II. PRODUCT SPREAD MODEL

We employ the modified spread dynamics proposed in
[29] to incorporate the coupling between the “epidemic-
like” spread of product adoption and the opinion exchange
dynamics. The product adoption dynamics occur over a
weighted, directed graph GP of N subpopulations, or nodes.
The opinion dynamics occur over a weighted, directed graph
GO with the same node set as GP , but whose edges may or
may not coincide with GP . We say that agent j is a neighbor
of node i in GX if there is a directed edge from node j to
node i in GX , where X = P,O, and denote the neighborhood
set of node i as NX

i for X = P,O.
Each node, or subpopulation, i has a proportion of agents

that have adopted the product xi ∈ [0, 1]. The subpopulation
represented by node i also has an overall average opinion
oi ∈ [0, 1], modeling how much the subpopulation values
the product (oi = 0 means the subpopulation is averse to
the product, oi = 1 means very receptive to the product).
The product adoption dynamics for each node evolve as a
function of time:

ẋi = −δixi(1− oi) + (1− xi)oi

∑
NP

i

βijxj + βii

 (1)

where δi ≥ 0 is the product drop rate for subpopulation
i, βij ≥ 0 is the exogenous adoption rate representing the
impact of node j on node i, and βii ≥ 0 is the endogenous
adoption rate . The parameters βij are also the weights on
the product graph GP .

The two terms of the model, δixi(1 − oi) and (1 −
xi)oi

(∑
NP

i
βijxj + βii

)
, correspond roughly to a disadop-

tion term and an adoption term, respectively. The disadoption
term, δi(1 − oi)xi, indicates that the rate of dropping the
product is related to δi, just as in the healing term in the
case of epidemic spread; however, here δi is modified by the
average opinion oi. A high opinion of the product will make
the subpopulation less likely to disadopt. The adoption term,
(1−xi)oi

(∑
NP

i
βijxj + βii

)
, is modified in two respects.

First, the rate of adoption is also modified by oi, where a low
oi will decrease the rate of adoption of the product. Second,
there is the term βii which describes the innovativeness of
the population. If a population is innovative (large βii), it
will adopt before its network neighbors do.

For the rest of the paper it is assumed that the initial
conditions xi(0), oi(0) ∈ [0, 1] ∀i and are known. As
will be proven later, xi(0), oi(0) ∈ [0, 1] ∀i implies that
xi(t), oi(t) ∈ [0, 1] ∀i, t ≥ 0. Hence, xi(t) and oi(t) are
functions from [0,∞) to [0, 1].

Assumption 1. For all i ∈ {1, 2, . . . , N}, we have δi > 0.

Assumption 2. The matrix B = [βij ] is non-negative and
irreducible. Therefore GP is strongly connected.

III. SIGNED CONSENSUS MODEL

The signed consensus, or Altafini, model [2] is of the form
ȯi =

∑
NO

i

|aij |(sgn(aij)oj − oi), (2)

where aij are real-valued weights, with negative weights for
the neighbor nodes that the ith node distrusts. It is known that
if the opinion graph is structurally balanced1, then the model
can reach a bipartite consensus, meaning that all the members
of one group converge to a value and all the members of
the other group converge to the negative of that value [2].
Alternatively, if the graph is structurally unbalanced, then
the opinions converge to 0N [2]. Due to the presence of
negative opinions in the population, the following model was
proposed in [29] to ensure that the full model is well defined:

ẋi = −δixi(1− oi) + (1− xi)oi

∑
NP

i

βijxj + βii

 , (3)

ȯi =
∑
NO

i
|aij |

(
sgn(aij)(oj − .5)− (oi − .5)

)
+ xi − oi, (4)

where we assume that GO is undirected. Define oi = ōi + .5
and assume that ōi(0) ∈ [−.5, .5] ∀i. Then, (4) becomes

˙̄oi =
∑
NO

i

|aij |(sgn(aij)ōj − ōi) + xi − oi, (5)

which, without the xi−oi term, reduces to the Altafini model.
The term xi − oi acts to ensure that a subpopulation reacts
to adoption, which can be seen as removing cognitive disso-
nance from the agents in the subpopulation [10]. Cognitive
dissonance occurs when there is a mismatch between an
agent’s behavior and the opinions that it holds. The Altafini
dynamic, and the oppositional brand loyalty which it helps
capture [24], [25], is particularly appropriate for products that
involve a high degree of self-concept [32], i.e. products that
relate to a person’s self image. Those agents in the network
which identify differently from each other will eventually
clash, necessitating the Altafini model.

Note that when there are no negative edges this reduces
to the Abelson model, the model that was explored in detail
in [28], [29]. When negative edges are present and the graph
is structurally balanced, the system can converge to a split
equilibrium, that is, one where some subpopulations have
adopted and some subpopulations have disadopted. This is
illustrated via simulation in Section V.

IV. ANALYSIS

We first show that the model in (3) and (5) remains in a
compact set. We then provide a series of propositions that
characterize some of the equilibria of the model.

Lemma 1. For the model in (5), if x(0) ∈ [0, 1]N

and ō(0) ∈ [−.5, .5]N , then x(t) ∈ [0, 1]N and ō(t) ∈
[−.5, .5]N , ∀t ≥ 0.

1A signed graph is structurally balanced if it has a bipartition of the
nodes V1, V2, i.e., V1 ∪ V2 = V and V1 ∩ V2 = ∅, such that aij ≤ 0,
∀vi ∈ Vp, vj ∈ Vq where p, q ∈ {1, 2}, p 6= q; otherwise, aij ≥ 0 [15].



Proof. First consider the opinion dynamic. Equation (2) can
be rewritten as

ȯ = −LOo, (6)

where LO is the Laplacian and each element of the spectrum
of −LO is non-positive, i.e. ∀λ ∈ σ(−LO), λ ≤ 0 [2]
(undirected GO implies an all real spectrum). This implies
that the system is diminishing or oscillating, that is, no state
is increasing in magnitude. We can rewrite (5) as

˙̄o = (−LO − I)ō+ x− .5N .

To consider the effect of x(t) on the opinion dynamic, sup-
pose that x(t) ∈ [0, 1]N . It follows that x−.5N ∈ [−.5, .5]N ,
and thus any positive effect x− .5N has on the system will
be dampened by the −ō term. Therefore if ō(0) ∈ [−.5, .5]N

and x(t) ∈ [0, 1]N , then ōi(t) ∈ [−.5, .5], ∀t ≥ 0.
Next consider the adoption dynamic and suppose that

ō(t) ∈ [−.5, .5]N . Then, we have o ∈ [0, 1]N . So, by (3), if
for some fixed t∗, xi(t∗) = 1, then ẋi(t∗) = −δi(1− oi) ≤
0. Likewise, if for some t∗, xi(t∗) = 0, then ẋi(t∗) =

oi

(∑
NP

i
βijxj + βii

)
≥ 0. Therefore, since each xi(t) is

a continuous function, if x(0) ∈ [0, 1]N and o(t) ∈ [0, 1]N

we have x(t) ∈ [0, 1]N , ∀t ≥ 0. Since x(0) ∈ [0, 1]N and
ō(0) ∈ [−.5, .5]N , from the preceding discussion, x(t) ∈
[0, 1]N and ō(t) ∈ [−.5, .5]N , ∀t ≥ 0.

Proposition 1. Under Assumption 1, if there exists an edge
in GO such that sgn(aij) = −1, then there can be no
equilibrium with oi = 0, ∀i. If there are no negative edges,
then z∗ = 02N is an equilibrium of the system.

Proof. If there are no negative edges, it is easy to see from
(3) and (4) that z∗ = 02N is an equilibrium point for the
system. Now consider the case when there exists an edge
such that sgn(aij) = −1. Suppose that, to the contrary, there
exists an equilibrium with oi = 0, ∀i, which implies that
ōi = −.5, ∀i. From (3), it follows that x∗i = 0, ∀i. Then, (4)
reduces to the continuous-time Altafini model. If the signed
graph is structurally balanced with at least one negative edge,
the signed Laplacian matrix has an eigenvalue at zero, whose
corresponding eigenvector cannot be 1N [2]. Thus, −.5N
cannot be an eigenvector of the signed Laplacian matrix for
the zero eigenvalue, which contradicts the hypothesis that
there exists an equilibrium with oi = 0, ∀i. If the signed
graph is structurally unbalanced, the signed Laplacian matrix
does not have an eigenvalue at zero [2]. Thus, LOō 6= 0N ,
which also contradicts the hypothesis that there exists an
equilibrium with oi = 0, ∀i.

Proposition 2. Under Assumption 1, if there exists an edge
such that sgn(aij) = −1, then there can be no equilibrium
with oi = 1, ∀i. If there are no negative edges, z∗ = 12N is
an equilibrium of the system.

Proof. The proposition can be proved using arguments sim-
ilar to those in the proof of Proposition 1.

Proposition 3. The equilibria in xi of the system are of the
form

x∗i =
o∗i

(∑
NP

i
βijx

∗
j + βii

)
δi(1− o∗i ) + o∗i

(∑
NP

i
βijx∗j + βii

) .
Proof. Consider the xi dynamic at equilibrium:

0 = −δix∗i (1− o∗i ) + (1− x∗i )o∗i

∑
NP

i

βijx
∗
j + βii


δix
∗
i (1− o∗i ) = (1− x∗i )o∗i

∑
NP

i

βijx
∗
j + βii


δi(1− o∗i ) + o∗i

∑
NP

i

βijx
∗
j + βii

x∗i = o∗i

∑
NP

i

βijx
∗
j + βii



x∗i =

o∗i

∑
NP

i

βijx
∗
j + βii


δi(1− o∗i ) + o∗i

∑
NP

i

βijx
∗
j + βii

 .

Proposition 4. If βii = 0, ∀i, then there is an equilibrium
point of the system such that x∗ = 0N .

Proof. From Proposition 1, this holds if there are no negative
edges in the system. Consider the case where there is at
least one negative edge in the opinion graph GO and denote
the equilibrium opinion as o∗ 6= 0N . Consider the adoption
dynamic at x = 0N :

ẋi = −δixi(1− o∗i ) + (1− xi)o∗i

∑
NP

i

βijxj + βii


= −δi(0)(1− o∗i ) + (1− 0)o∗i

∑
NP

i

βij0 + βii


= o∗i βii.

Then if βii = 0, ẋi = 0. If this holds ∀i, then x = 0N is an
equilibrium in the adoption dynamic.

Proposition 5. If δi >
∑
NP

i
βij + βii, then at equilibrium

x∗i < o∗i . If δi < βii, then at equilibrium o∗i < x∗i . Given x∗,
if δi >

∑
NP

i
βijx

∗
j + βii, then at equilibrium x∗i < o∗i , or if

δi <
∑
NP

i
βijx

∗
j + βii, then at equilibrium o∗i < x∗i .

Proof. By assumption, δi >
∑
NP

i
βij + βii, and since xj ∈

[0, 1] ∀j, we have δi >
∑
NP

i
βijx

∗
j +βii, which implies that

δi(1− o∗i ) + o∗i

∑
NP

i

βijx
∗
j + βii

 >

∑
NP

i

βijx
∗
j + βii

 .

Therefore,



x∗i =
o∗i

(∑
NP

i
βijx

∗
j + βii

)
δi(1− o∗i ) + o∗i

(∑
NP

i
βijx∗j + βii

)
<
o∗i

(∑
NP

i
βijx

∗
j + βii

)
(∑

NP
i
βijx∗j + βii

) = o∗i .

(7)

If δi < βii then by similar logic x∗i > o∗i . Given x∗, the
remaining propositions follow similarly.

We next describe the behavior of the system when there is
strong disadoption, i.e. δi >

∑
NP

i
βij +βii. This is captured

by the following main result of this section which, under
certain conditions, characterizes the unique equilibrium of
the model, with local exponential stability.

Theorem 1. Suppose that δi >
∑
NP

i
βij + βii, βii = 0 ∀i,

and o∗ < .5N . Then, under Assumption 2, the model has a
unique locally exponentially stable equilibrium, x∗ = 0N .
Proof. From (3) and with βii = 0, the dynamics of x can
be regarded as an SIS model with healing rate δi(1 − oi)
and infection rates oiβij . For a given o, it is known that
if s(−D(I − O) + OB) ≤ 0, x has a unique equilibrium
at 0N , where s(M) denotes the largest real part among all
eigenvalues of square matrix M (see Propositions 3 and
4 in [20]), D = diag(δ1, . . . , δN ), O = diag(o1, . . . , oN ),
and B = [βij ]. Since δi >

∑
NP

i
βij and o∗ < .5N , it

follows that (1 − o∗i )δi > o∗i
∑
NP

i
βij , ∀i, which implies

that s(−D(I − O) + OB) < 0. Thus, x∗ = 0N , which is
unique. Since x∗ = 0N , from (4), (LO + I)o∗ = LO.5N .

Since (LO + I) is invertible, no matter whether GO is
structurally balanced or not, o∗ is unique. Thus, the model
has a unique equilibrium.

To show stability of this equilibrium, consider the Jacobian
at equilibrium, which is of the form:

J(z∗) =

[
J1 0N×N

I −(LO + I)

]
, (8)

where J1 ∈ RN×N satisfies for each i ∈ {1, 2, . . . , N} that:
J1(z∗)ii = −δi(1− o∗i )

J1(z∗)ij =

{
oiβij if j ∈ NP

i

0 if j /∈ NP
i ∪ {i}.

(9)

To determine the stability of the equilibrium we now show
that the Jacobian is diagonally dominant and non-singular.
The second N rows of J(z∗) are diagonally dominant by
definition. Consider row i with i ∈ {1, 2, . . . , N} of J(z∗):

|J(z∗)ii| = |J1(z∗)ii|
= | − δi(1− o∗i )| = δi(1− o∗i )

>
∑
NP

i

βijoi =
∑
j 6=i

|J(z∗)ij |
(10)

Therefore the first N rows of J(z∗) are strictly diagonally
dominant. As the diagonal elements of J(z∗) are negative
and J(z∗) is diagonally dominant, the Gershgorin disc
theorem shows that the eigenvalues of J(z∗) are non-positive
[17]. The structure of J(z∗) is such that for each row i where
J(z∗) is not strictly diagonally dominant, i.e. |J(z∗)ii| ≥∑

j 6=i |J(z∗)ij |, the element J(z∗)i,i−N = 1 > 0,∀i ∈
{N + 1, . . . , 2N}. This implies J(z∗) has no eigenvalues

(a) Using A1

in (11) for GO
(b) Using A2

in (12) for GO
(c) Using A3

in (13) for GO

Fig. 1: Equilibria using the model in (3)-(4), GO with
adjacency matrices in (11)-(13), and GP given by (14).

at zero [31]. So the eigenvalues of J(z∗) are negative and
the equilibrium is locally exponentially stable.

Based on the simulations in Section V, we conjecture that
the condition o∗ < .5N will hold under the following:
Conjecture 1. If at equilibrium x∗ < o∗, then o∗ < .5N .

If true, this conjecture would imply that if δi >∑
NP

i
βij + βii then o∗ < .5N by Proposition 5 and if

βii = 0, ∀i then Theorem 1 could be used to show stability.
V. SIMULATIONS

In this section, the discussion moves from the theoretical
characterization of the equilibria of the coupled adoption
opinion model to various simulations that explore the behav-
ior of the model. For the figures, green and dashed magenta
lines indicate positive and negative edges, respectively, in the
opinion graph GO. For the nodes, blue (b) indicates xi = 0,
red (r) indicates xi = 1, and the color of node i shown is
determined by xir + (1 − xi)b. The diameter of each node
i is scaled by oi.

As mentioned in [29] this model can exhibit bipartite
consensus behavior, which will be discussed further using
three examples from [2]. We use the matrices from these
examples as the corresponding adjacency matrices for the
opinion graph GO:

A1 =

 0 1 −2
1 0 −4
−2 −4 0

 , (11)

A2 =

 0 1 −2
1 0 4
−2 4 0

 , and (12)

A3 =

0 1 2
1 0 4
2 4 0

 . (13)

We set the product spread matrix B = [βij ] to

B = βÂ1 = β

0 1 1
1 0 1
1 1 0

 , (14)

with β = 0.5 = δi ∀i. Here, βii = 0, ∀i. The equilibria for
these systems are depicted in Figure 1. The final opinions
are given by ō∗1 =

[
0 0 0

]
, ō∗2 =

[
0 0 0

]
, ō∗3 =[

−0.5 −0.5 −0.5
]
, and the final product adoption states

are x∗1 =
[
0.5 0.5 0.5

]
, x∗2 =

[
0.5 0.5 0.5

]
, x∗3 =[

0 0 0
]
, where we abuse notation using the subscript

i to indicate the use of Ai for the opinion graph GO.
These equilibria appear to be unique, independent of the
initial condition (as long as ō(0) ∈ [−.5, .5]N and x(0) ∈
[0, 1]N \ {0N}).



(a) Using A1

in (11) for GO
(b) Using A2

in (12) for GO
(c) Using A3

in (13) for GO

Fig. 2: Equilibria using the model in (3)-(4), the adjacency
matrices in (11)-(13), and B = β(Â1 + I).

If we allow βii = 0.5, ∀i, that is, B = β(Â1 + I),
then the behaviors change. The equilibria for these
systems are depicted in Figure 2. The final opinions
are given by ō∗1 =

[
0.3887 0.3811 −0.3647

]
,

ō∗2 =
[
0.0390 0.1171 0.0944

]
, ō∗3 =[

0.5 0.5 0.5
]
, and the final product adoption

states are x∗1 =
[
0.9446 0.9407 0.2508

]
, x∗2 =[

0.7275 0.7864 0.7699
]
, x∗3 =

[
1.00 1.00 1.00

]
The equilibria appear once again to be unique, independent
of initial condition (as long as ō(0) ∈ [−.5, .5]N and
x(0) ∈ [0, 1]N \ {0N}). Note that for the structurally
balanced opinion graph in Figure 2a the system converges
to a bipartite consensus. However the system depicted in
Figure 1a, with the same structurally balanced opinion
graph does not converge to a bipartite consensus. This
discrepancy illustrates the importance of the βii terms,
which differentiate the two systems. Also note that, as
expected, the systems in Figures 1c and 2c behave the same
as the Abelson model studied in [29].

We extend the simulations to a 6-node graph to explore the
behaviors with dominating healing rates and infection rates
on nontrivial graphs. The following figures show time series
data to help characterize the complex behavior of the coupled
adoption opinion system. The 6-node graph can be described

using three matrices for GO: A4 =


0 1 0 −1 0 0
1 0 1 0 −1 0
0 1 0 0 −1 0
−1 0 0 0 1 1
0 −1 −1 1 0 1
0 0 0 1 1 0

 ,

A5 =


0 1 0 −1 0 0
1 0 1 0 −1 0
0 1 0 0 1 0
−1 0 0 0 1 −1
0 1 −1 1 0 1
0 0 0 −1 1 0


A5 =


0
0
0

−1 0 0 0 1
0 1 −1 1 0 1
0 0 0 −1 1 0

 Â2 =


0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 0 1 0
1 0 0 0 1 1
0 1 1 1 0 1
0 0 0 1 1 0

 .

As shown by Theorem 1, if δi >
∑
NP

i
βij ,∀i, βii = 0,∀i

and there is a negative edge in the graph, then there is a
unique, locally stable equilibrium. Figure 3 considers the
case where the opinion graph has adjacency matrix A4,
B = .2Â2 and δi = 2,∀i and shows that this equilibrium
seems to be asymptotically stable on [0, 1]2N .

Figure 4 shows the system behavior where GO has ad-
jacency matrix A4, B = .2(Â2 + I) and δi = 2,∀i.
Figure 4 suggests that there is a unique, asymptotically stable
equilibrium point that satisfies 0 < x∗i < o∗i < .5, ∀i under
such conditions. The ordering of the adoption and opinion at
equilibrium does not seem to rely on the structural balance
of the underlying opinion network; this is shown in Figure
5, which considers the same adoption parameters as Figure 4
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Fig. 3: Adoption and Opinion for a structurally balanced 6-
node network with δi >

∑
NP

i
βij +βii, ∀i and βii = 0, ∀i.
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Fig. 4: Adoption and Opinion for a structurally balanced 6-
node network with δi >

∑
NP

i
βij +βii, ∀i and βii 6= 0, ∀i.

however the opinion graph has adjacency matrix A5, which is
not structurally balanced, instead of A4, which is structurally
balanced. Although the equilibrium point has changed, it
once again satisfies the ordering 0 < x∗i < o∗i < .5, ∀i. A
comparison of the structures and equilibria of Figure 4 and
Figure 5 are shown in Figure 6. The results of the simulations
lead to the following conjecture:
Conjecture 2. If δi >

∑
NP

i
βij + βii, ∀i, βii > 0, ∀i,

and there is a negative edge in the opinion graph, then there
is a unique, endemic equilibrium for the system such that
.5 > oi > xi > 0, ∀i which is stable on [0, 1]2N .
Note that the stability on [0, 1]2N is possible due to the neg-
ative edge and the fact that βii > 0, ∀i which excludes 12N
and 02N as equilibria by Proposition 2. Conjecture 2 suggests
that negative edges in a network have a powerful effect on
the disadoption behavior of the system. If there is a single
negative tie, then even if the innovation is as undesirable as
possible, there will still be those that use the product. This
might represent cases where self image, expressed through
opposition between communities, is sufficient to encourage
a fraction of the network to ignore product quality.

We also consider the high adoption rate scenario, i.e. βii >
δi,∀i. Figure 7 shows the case when the opinion graph has
an adjacency matrix A4, B = .2(Â2 + I) and δi = .1,∀i.
Under these conditions, there appears to be an equilibrium
which satisfies 1 > x∗i > o∗i > .5 at equilibrium.
Conjecture 3. If 0 < δi < βii and there is a negative edge
in the opinion graph, then there is a unique, stable endemic
equilibrium for the system such that 1 > x∗i > o∗i > .5
which is stable on [0, 1]2N .
Again, a negative edge has a strong effect on the behavior
of the model. If one negative edge exists, even if the product
is as viral as possible not everyone will adopt.

One way to think about the negative edges and their impact
is through political polarization, where a negative edge rep-
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Fig. 5: Adoption and Opinion for a 6-node network that is
not structurally balanced with δi >

∑
NP

i
βij + βii, ∀i and

βii 6= 0, ∀i.

(a) Equilibrium of Fig. 4 (b) Equilibrium of Fig. 5

Fig. 6: Opinion graph structures and equilibria of the coupled
adoption opinion model for two sets of parameters.

0 5 10 15 20 25

Time 

0

0.2

0.4

0.6

0.8

1

A
d
o
p
ti
o
n

(a) Adoption

0 5 10 15 20 25

Time 

0

0.2

0.4

0.6

0.8

1

O
p
in

io
n

(b) Opinion

Fig. 7: Adoption and Opinion for a structurally balanced 6-
node network with 0 < δi < βii, ∀i.

resents two communities that have become polarized against
each other. Recent studies have suggested that polarization
has an impact on the adoption of ideas about climate change
[14] and can effect brand value [21]. Conjectures 2 and 3
suggest that the model presented here has the potential to
help understand adoption behavior under polarization, which
is particularly pressing in light of recent events such as the
Nike advertising campaign featuring Colin Kaepernick [12].

VI. CONCLUSION

We have explored a product adoption model which allows
antagonistic interaction in the opinion dynamics. We have
shown that the model is well posed, and have provided
preliminary analyses. The behavior of the model have been
further explored via simulation, resulting in several conjec-
tures, whose proofs will be subjects of future work.
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