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Abstract— In this paper we propose a novel model of product
spread that combines models which capture the behavior of
epidemic-like product spread among agents in a network with
different opinion models, allowing a greater range of product
spread behaviors to be modeled. In the proposed opinion-
dependent product spread models, product adoptions over a
network are affected by the agents’ opinions of the product.
These opinions evolve via a separate set of network-dependent
opinion dynamics, which are also dependent on the product
adoption of the agent. The behavior of the product spreading
is explored under the influence of several different models of
opinion dynamics. We provide analysis of the local equilibria
of the coupled models and compare the behavior of the coupled
product-opinion dynamics via simulation. These simulations
illustrate that the opinion dynamics drive the outcome of the
system, allowing different types of product adoption to be
modeled through different choices of opinion dynamics and
strengthening the ability of epidemic spread techniques to
model product adoption.

I. INTRODUCTION

A consumer’s choice to adopt a product results from a
complex interplay between the behavior of the consumer,
the behavior of its network neighbors, and the consumer’s
opinion towards the product [1]. More accurately describing
this process requires models that capture both the spread of a
product and the spread of an opinion. The SIS (susceptible-
infected-susceptible) epidemic model abstractly describes a
spreading process of a single disease, product, norm, or idea
[2], [3]. Both SIS epidemic models and opinion dynamics
have been extensively studied in isolation but have yet to
be examined together. We investigate new coevolutionary
dynamics that arise when they are coupled, giving rise to a
model capturing the effect consumers’ opinions have on the
epidemic-like spread of a single product, norm, or idea. This
approach allows for a more nuanced description of epidemic
product spread, providing avenues to address the issue of a
lack of diversity in outcome, which has been raised for using
epidemic models for product spread [3].

Networked SIS models are well-understood mathemati-
cally and computationally [4], [5]. In such models, an indi-
vidual is either susceptible to infection (has not yet adopted
the product or idea) or is infected (has adopted). Susceptible
individuals can become infected from each of their infected
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neighbors in the network at a rate β, and infected individuals
can heal to become susceptible again at a rate δ. In the setting
of epidemic awareness and behavior change, SIS models
with dynamically scaled β parameters have been studied
[6]–[8]. In these works, the coevolution between epidemic
and behavior can only hinder the spread of infection. The
combined product-opinion model proposed herein essentially
modifies β and δ based on the agent’s opinion towards the
product, and can either hinder or promote the spread of the
product.

Opinion dynamics have been of interest in sociology since
the canonical models of Abelson and DeGroot [9], [10], and
have since become of interest to the controls community [11].
These models have been extended in search of outcomes
that do not reach “universal ultimate agreement” by the
Hegselmann-Krause and Altafini models [12], [13]. The
Hegselmann-Krause model allows agents to ignore others
whose opinions are sufficiently different, while the Altafini
model allows agents to have negative interactions with net-
work neighbors. Hence, even the relatively simple Abelson
and DeGroot models can be modified to capture several ways
that opinions spread through a population.

There have been few works that study the interplay be-
tween product adoption and opinion dynamics, i.e. allowing
a consumer’s opinion about the quality or value of a product
affect his/her decision to purchase or adopt it. These opinions
change dynamically because they are influenced by the
opinions and decisions of their network neighbors. Kalish
proposed a coupled adoption and awareness model that
includes advertising [14]. Similar to early SIS models, this
model assumes full connectivity of the graph and models the
system with only two differential equations, aggregating the
population into one group. The Continuous Opinion Discrete
Action (CODA) model provides a model of discrete product
adoption with Bayesian opinion updates [15]. However the
Bayesian opinion update only depends on the adoption
actions of network neighbors, not their opinions.

In this paper, we study dynamics that couple a mean-
field SIS epidemic ODE model with various continuous-time
opinion dynamics over a network of agents. Depending on
how opinions propagate, we observe qualitatively different
dynamics. Hence, the choice of opinion dynamic drives the
outcome of the coupled system, bringing the model closer to
the reality that a consumer’s opinion of a product drives their
propensity to adopt or avoid said product. For example, new
technologies or ideologies can become the new collective
standard because they introduce a much-needed change in
society. On the other hand, they can be rejected in favor of the
status quo if the population is not receptive to change. There



can also be coexistence among several competing products
or ideas, e.g. a consumer’s preferred brand of smart phones
or an individual’s political affiliation. Our opinion-dependent
product spread models exhibit behavior that reflects all of
these scenarios, by looking at two distinct models of opinion
dynamics. The first is the Abelson consensus model, which
reaches universal ultimate agreement. For the second, we
propose a novel threshold-based opinion dynamic model
which exhibits polarized opinions in clusters of the network.

The paper is organized as follows: The product spread
model is introduced in Section II, which is a mean-field
SIS epidemic ODE in continuous time that is modified
via coupling with opinion exchange dynamics among the
nodes in the network. In Section III, we couple the product
adoption model with a Laplacian-based consensus model,
while Section IV explores coupling with a threshold-based
opinion dynamic. Simulation-based comparisons between the
two opinion models are given in Section V. Finally, we give
concluding remarks in Section VI.

A. Notation

Given a vector x(t), ẋ(t) indicates the time-derivative. The
time dependency is dropped where it is obvious, to simplify

notation. The notation
∂f

∂x
indicates the partial derivative

of f with respect to x. Given a vector x ∈ RN , the
transpose is denoted by xT . The notation diag(·) refers to
a diagonal matrix with the vector argument on the diagonal.
The notation ∅ indicates the empty set. The N -dimensional
vectors of zeros and ones are 0N and 1N , respectively.

II. PRODUCT SPREAD MODEL

We modify the standard SIS epidemic ODE dynamics to
incorporate the coupling between the “epidemic-like” spread
of product adoption and the opinion exchange dynamics. The
product adoption dynamics occur over a weighted, directed
network GP of N agents, or nodes. The opinion dynamics
occur over a weighted digraph GO with the same node set as
GP , but whose edges may or may not coincide with GP . We
denote the neighborhood set of agent i as NX

i for X = P,O.
Each node i has an adoption probability xi ∈ [0, 1] for

the product, which represents how likely the consumer is
to adopt the product (xi = 0 means the consumer has not
adopted, xi = 1 means the consumer has). The consumer
represented by node i also has an opinion oi ∈ [0, 1],
modeling how much the consumer values the product (oi = 0
means very averse to the product, oi = 1 means very
receptive to the product). The product adoption dynamics
for each node evolve as a function of time:

ẋi = fi(x, o)

≡ −δixi(1− oi) + (1− xi)oi

∑
NP

i

βijxj + βii

 (1)

where δi ≥ 0 is the product drop rate for agent i, βij ≥ 0
the exogenous adoption rate, and βii ≥ 0 the endoge-
nous adoption rate. The parameters βij are the weights
on the product graph. It is assumed the initial conditions

xi(0), oi(0) ∈ [0, 1] ∀i are known. As will be shown later,
xi(0), oi(0) ∈ [0, 1] ∀i implies xi(t), oi(t) ∈ [0, 1] ∀i, t ≥ 0.
Hence, xi(t) and oi(t) are functions from [0,∞) to [0, 1].

In the subsequent sections we will explore two different
opinion dynamic models and their effects on the spread of
the product. When convenient, we denote the aggregate 2N -
state vector by z = [xT , oT ]T .

For the model in (1), each xi represents a probability
of adoption and each oi is a scaled opinion. As such the
proposed model is only meaningful for xi, oi ∈ [0, 1]. To this
end we first establish well-posedness of the product model.

Lemma 1: For the model in (1), if x(0) ∈ [0, 1]N and
o(t) ∈ [0, 1]N for all t ≥ 0, then xi(t) ∈ [0, 1] for all t ≥ 0.

Proof: Assume o(t) ∈ [0, 1] for all t ≥ 0.
If xi(0) = 0 and xj(0) ∈ [0, 1] for all j 6= i, then by (1),
ẋi(0) ≥ 0, driving xi(t) ≥ 0 for t > 0, since βij ≥ 0.
If xi(0) = 1 and xj(0) ∈ [0, 1] for all j 6= i, then by (1),
ẋi(0) = −δixi(1 − oi) ≤ 0, driving xi(t) ≤ 1 for t > 0,
since δi ≥ 0.

Since there exists a derivative by (1), xi(t) is continuous.
Therefore since we assume xi(0) ∈ [0, 1] for all i, and have
shown that for t such that xi(t) = 1, ẋi(t) ≤ 0 and for t
such that xi(t) = 0, ẋi(t) ≥ 0, we have xi(t) ∈ [0, 1] for all
t ≥ 0.

Having shown the well-posedness of the product model,
we now discuss properties of the product spread model by
considering the partial derivatives of the function in (1). Note

∂fi
∂xi

= −δi(1− oi)− oi

∑
NP

i

βijxj + βii

 , (2)

which is always negative under the assumptions of Lemma 1
since βij , δi ≥ 0. The other set of partial derivatives with
respect to x is

∂fi
∂xj

=

{
(1− xi)oiβij if j ∈ NP

i , j 6= i

0 if j /∈ NP
i ∪ {i},

which is always non-negative under the assumptions of
Lemma 1 and since βij ≥ 0. We also have

∂fi
∂oi

= δixi + (1− xi)

∑
NP

i

βijxj + βii

 (3)

which is always non-negative under the assumptions of
Lemma 1 and since βij , δi ≥ 0. Finally,

∂fi
∂oj

= 0 ∀j 6= i. (4)

As in the classic SIS epidemic model, the adoption of
network neighbors encourages the consumer to adopt. In the
new coupled model, the opinion of the consumer modifies
the impact of adoption in (2) and encourages adoption via
(3). Having briefly explored the product spread model in
isolation, we introduce two different models of opinion
dynamics.



III. ABELSON OPINION DYNAMICS

The first opinion dynamic model that will be considered
in conjunction with the product spread model in (1) is the
canonical Abelson model, which in the 1960s laid the foun-
dation for the study of opinion dynamics [9]. The modified
dynamics follow

ẋi = fi(x, o)

ȯi = gi(x, o) =
∑
NO

i

wo
ij(oj − oi) + (xi − oi) , (5)

where wo
ij ≥ 0 is the weight on the opinion network. In the

following discussion, it is assumed that wo
ij = 1, ∀i, j. The

last term of (5) moves an agent’s opinion toward its adoption
state. Hence, an agent’s opinion is affected by its neighbor’s
opinions and its own adoption level.

As the proper behavior of the product spread model is
dependent on the behavior of the opinion model, we show
well-posedness of the opinion in the combined model.

Proposition 1: For the model in (5), if x(0) ∈ [0, 1]N and
o(0) ∈ [0, 1]N , then xi(t), oi(t) ∈ [0, 1] for all t ≥ 0.

Proof: If oi(0) = 0, x(0) ∈ [0, 1]N , and oj(0) ∈ [0, 1]
for all j 6= i, then by (5), ȯi(0) ≥ 0, driving oi(t) ≥ 0 for
t > 0. If oi(0) = 1, x(0) ∈ [0, 1]N , and oj(0) ∈ [0, 1] for all
j 6= i, then by (5), ȯi(0) ≤ 0, driving oi(t) ≤ 1 for t > 0.

Since there exists a derivative by (5), oi(t) is continuous.
Therefore since we assume oi(0) ∈ [0, 1] for all i, and have
shown that for t such that oi(t) = 1, ȯi(t) ≤ 0 and for t
such that oi(t) = 0, ȯi(t) ≥ 0, we have oi(t) ∈ [0, 1] for all
t ≥ 0.

As the preceding argument holds for all i ∈ {1, 2, . . . , N}
this implies o(t) ∈ [0, 1]N . By applying Lemma 1, we have
that x(t) ∈ [0, 1]N .

We focus our attention on two equilibrium points which
can be found by inspection, z∗ ∈ {02N , 12N}, i.e. the
equilibrium is either no one adopts the product and everyone
has an opinion equal to zero, or everyone adopts the product
and has an opinion equal to one. Discussion of the local
stability of these equilibria requires analysis of the Jacobian
of the opinion dependent product spread model, which turns
out to be a Metzler matrix. A matrix, A, is said to be Metlzer
if all off-diagonal elements are non-negative aij ≥ 0 ∀i 6= j.

If the Jacobian evaluated at an equilibrium is Hurwitz then
the equilibrium is locally stable. We recall the following
condition for Metzler matrices from [16]:

Lemma 2: For a Metzler matrix A ∈ Rn×n the following
statements are equivalent :
• A is Hurwitz
• There exists a ξ ∈ Rn such that ξ is element-wise

positive and Aξ is element-wise negative.
With Lemma 2 we can now discuss the local stability of
two of the equilibria of the combined opinion-product spread
model.

Theorem 1: The equilibrium point z∗ = 12N is locally
stable if ∀i,

∑
NP

i
βij + βii > δi and equilibrium point

z∗ = 02N is locally stable if ∀i, δi >
∑
NP

i
βij + βii.

Proof: The Jacobian of the dynamics can be written in
block form as:

J(z) =

[ ∂f
∂x

∂f
∂o

∂g
∂x

∂g
∂o

]
.

The first N rows of the Jacobian are are governed by (2) -
(4). The remaining entries of the Jacobian follow:

∂gi
∂xi

= 1

∂gi
∂xj

= 0 ∀j 6= i

∂gi
∂oi

= −dOi − 1

∂gi
∂oj

=

{
1 if j ∈ NO

i ∀j 6= i

0 if j /∈ NO
i ∪ {i},

where dOi is the (in)degree of node i in the opinion network.
Consider the Jacobian matrix at the equilibrium point z∗ =
12N

J(z∗) =

 diag

−∑
NP

i

βij − βii

 diag (δi)

I −(LO + I)

 , (6)

where LO is the graph Laplacian of the opinion network.
Note that the Jacobian in (6) is a Metzler matrix, allowing
the application of Lemma 2.

To show the local stability of z∗ = 1N , consider ξ =
[1N , α1N ]T then J(z∗)ξ results in 2N equations of the form−∑

NP
i

βij − βii

 1 + δi (α1)

1− αdOi − α+ α
∑
NO

i

1

(7)

By setting the equations in (7) less than 0, the following
conditions appear

α > 1
and ∑

NP
i

βij + βii > αδi > δi

for all i ∈ {1, . . . , N}. Therefore if
∑
NP

i
βij + βii > δi ∀i

then ∃α > 1 such that ξ = [1N , α1N ]T shows the Jacobian
is Hurwitz, and z = 12N is a locally stable equilibrium.

Now consider the Jacobian matrix at the equilibrium z∗ =
02N

J(z∗) =

 diag (−δi) diag

∑
NP

i

βij + βii


I −(LO + I)

 ,
Following a similar argument shows that the vector ξ =
[1N , α1N ]T , α > 1 leads to the condition δi >

∑
NP

i
βij +

βii for local stability of z = 02N .
The stability conditions for the equilibria is similar to the
standard epidemic threshold for stability of the disease-free
equilibrium, λmax(BA − diag(δi)) < 0, where B is the
matrix of βij (see Lemma 2 of [17] for a proof). Though
the long term behavior of these systems has yet to be



studied, the structure of the epidemic threshold suggests
that convergence to these equilibria will depend on network
structure. Simulations have shown that for a connected and
undirected opinion graph, if ∀i

∑
NP

i
βij + βii > δi then

the system converges to z = 12N . However if ∃i such that∑
NP

i
βij + βii < δi while

∑
NP

k
βkj + βkk > δk ∀k 6= i

then the equilibrium depends on the initial conditions.
The Abelson model has been extended in a number of

ways which fit easily in the proposed coupling of opinion
dynamics and product spread. Two examples are the bounded
confidence model and the Altafini model. While these exten-
sions are not the main focus of this paper, we will shortly
comment on their effects on the product spread model.

First, the bounded confidence modification of the classical
Abelson model, [18], [19], coupled with the product spread
dynamics is

ȯi = gi(x, o) =
∑
NO

i

p(oj , oi)(oj − oi) + xi − oi. (8)

where
p(oj , oi) =

{
wo

ij if ‖oj − oi‖ < ε

0 if else.

The equilibria z∗ ∈ {02N , 12N} are also equilibria of this
model and in fact in a small region around these equilibria
the bounded confidence model is equal to Abelson dynamics
giving the same characterization for local stability of equilib-
ria. Simulations show that though the models share a set of
equilibria, the behavior to reach those equilibria is different.

Second, the Altafini model [13] is of the form

ȯi =
∑
N Ō

i

|aij |(sgn(aij)oj − oi), (9)

where N Ō
i is a signed set, with negative edges for the

neighbors node i distrusts. It is well known that if the opinion
graph is structurally balanced1, then it can give a bipartite
consensus, meaning all the members of one group converge
to a value and all the members of the other group converge
to the negative of that value [13], [20]. Alternatively, if the
graph is structurally unbalanced then the opinions converge
to 0N [13], [21]. Due to this behavior the assumption of
Lemma 1, that o(t) ∈ [0, 1] for all t ≥ 0, is difficult to
meet. Therefore we need to slightly modify the model for
x(t) when employing Altafini-type dynamics. The complete
model we propose is

ẋi = fi(x, ō)

ȯi =
∑
N Ō

i

|aij |(sgn(aij)oj − oi) + xi − ōi, (10)

where ōi = oi + .5, we assume oi(0) ∈ [−.5, .5] ∀i, and the
notation in (10) is the same as in (9). Note that when there are
no negative edges this reduces to the Abelson model in (5).
When negative edges are present and the graph is structurally
balanced the system can converge to a split equilibrium,

1A signed graph is structurally balanced if it has a bipartition of the
nodes V1, V2, i.e., V1 ∪ V2 = V and V1 ∩ V2 = ∅, such that aij ≤ 0,
∀vi ∈ Vp, vj ∈ Vq where p, q ∈ {1, 2}, p 6= q; otherwise, aij ≥ 0 [13],
[20].

that is, some nodes are completely infected and some nodes
are completely healthy. This is illustrated via simulation in
Section V. The behavior of the model is difficult to compare
to the other models herein, because they do not have signed
edges. We do include a simulation showing a comparison of
the three models in this Section V. Given the negative edges
in the A matrix, the equilibria set of the model becomes more
complicated. Therefore we leave analysis of this model as an
area for future investigation.

The Abelson opinion dynamics of this section induce the
outcomes all adopt or all not-adopt. This reflects scenarios
where a new technology or idea either becomes the new
standard or completely fails to get adopted. 2

IV. THRESHOLD-WEIGHTED AVERAGE OPINIONS

Threshold based models are fundamental models in the
study of spreading processes over networks, having been
considered since the late 1970s [22], [23]. However these
models have yet to be studied in the setting of opinion ex-
change dynamics. We propose a model of opinion dynamics
where individuals update their opinions using a weighted
average of the opinions and product adoptions of friends,
combined with a threshold. The threshold represents how
stubborn or receptive one is to the influence of neighbors.
As will be seen in the following analysis, this allows for
polarization in opinions, resulting in coexistence of adopters
and non-adopters.

Consider opinion dynamics defined by

ȯi = gi(x, o) = oi(1− oi) (hi(x, o)− τi) , (11)

where

hi(x, o) =

∑
NO

i
wo

ijoj +
∑
NP

i
wx

ijxj∑
NO

i
wo

ij +
∑
NP

i
wx

ij

.

The wo
ij ∈ [0, 1] represents node i’s valuation of node

j’s opinion, and the wx
ij ∈ [0, 1] represents the influence

j’s adoption decision has over i’s opinion. The opinion
threshold, τi ∈ [0, 1], is a measure of stubbornness to opinion
change. If τi = 1, no amount of influence will force an
increase in oi. However, if τi = 0, any amount of influence
increases oi.

We consider the well-posedness of the combination of the
model in (1) and (11).

Proposition 2: In the opinion dynamics defined by (11),
if o(0) ∈ [0, 1]N then x(t), o(t) ∈ [0, 1]N for all t ≥ 0.

Proof: For any s ≥ 0, if oi(s) = 0 (= 1) then oi(t) =
0 (= 1) for all t ≥ s. Hence, by continuity of the oi, for
oi(0) ∈ [0, 1], oi(t) ∈ [0, 1] for all t ≥ 0. As o(t) ∈ [0, 1]N

then by Lemma 1 x(t) ∈ [0, 1]N for all t ≥ 0.
The form of ȯi in (11) is motivated from the replicator
equation in evolutionary game theory. It follows a similar
logistic growth and decay which depends on how a strategy’s

2Examples of a new innovation being widely adopted are the invention
of the steam engine and the administration of antibiotics. The practice
of boiling water is an example of an innovation that failed to spread in
the Peruvian village of Los Molinas, due to the inhabitants viewing it as
incompatible with cultural beliefs. [1].



density-dependent fitness compares to the average fitness of
the population.

A class of equilibria of the dynamics has the form
E = {z∗ : x∗i = o∗i ∈ {0, 1}},

i.e. in equilibrium, an agent adopts the product if and only if
its opinion of the product is maximal, and avoids the product
if and only if its opinion is zero.

Theorem 2: The locally stable equilibria E∗ ⊂ E of (1),
(11) are given by

E∗ =

{
z∗ ∈ E : z∗i =

{
1 if hi(z∗) > τi

0 if hi(z∗) < τi

}
. (12)

Essentially, the stable equilibria exhibit clustering in the
network - a node adopts the product only if a sufficient
number of its neighbors also adopt, and it does not adopt
only if enough neighbors also do not adopt. Thus, there
will be no “isolated” nodes in equilibrium, i.e. a node that
adopts the product necessarily has neighbors who also adopt.
Proof: In order to examine the Jacobian of the opinion-
dependent product spread model in (11), we compute the
following quantities:
∂gi
∂xi

= 0

∂gi
∂xj

=


wx

ij∑
NO

i

wo
ij +

∑
NP

i

wx
ij

oi(1− oi) if j ∈ NP
i ∀j 6= i

0 if j /∈ NP
i ∪ {i}

∂gi
∂oi

= (1− 2oi)(hi(z)− τi) (13)

∂gi
∂oj

=


wo

ij∑
NO

i

wo
ij +

∑
NP

i

wx
ij

oi(1− oi) if j ∈ NO
i ∀j 6= i

0 if j /∈ NO
i ∪ {i}.

For any equilibrium z∗ ∈ E , using the above and (2)-(4),
the Jacobian takes the form

J(z∗) =

 diag
(
∂fi
∂xi

(z∗)

)
diag

(
∂fi
∂oi

(z∗)

)
0N×N diag

(
∂gi
∂oi

(z∗)

)
 .

Since this is a block upper-triangular matrix, the eigenvalues
of J(z∗) are simply

eig(J(z∗)) =

{
∂fi
∂xi

(z∗)

}N

i=1

∪
{
∂gi
∂oi

(z∗)

}N

i=1

,

and (2) gives that ∂fi
∂xi

(z∗) < 0. For local stability, we need
all of the ∂gi

∂oi
(z∗) defined by (13) to be negative. Therefore

the conditions for stability are given by (12).
The novel opinion dynamics in this section allow all adopt

or not-adopt as stable equilibria as in Section III, but also
encourages new stable equilibria exhibiting segregation in
the population between adopters of the product and non-
adopters. This reflects scenarios where a new innovation
diffuses to a subset of the population that are “like-minded”,
and fails to spread to the rest.

oi(t)

t

0
0

1

20 40

oi(t)

t

0
0

1

100 200

xi(t)

t

0
0

1

20 40

xi(t)

t

0
0

1

100 200

Fig. 1. Dynamics of the Abelson coupled model (left column) and
threshold-based model (right column). In each model, all individual opinions
oi(t) (top row) and adoptions xi(t) (middle row) are shown converging to
their equilibrium values o∗i , x∗i = 0 or 1. The bottom row depicts the
final equilibrium layout over the 30 node geometric network. Large nodes
correspond to x∗i = 1 and small nodes correspond to x∗i = 0. The largest
diameters indicate oi(0) = 1 and the smallest diameters indicate oi(0) = 0.
The network for the SIS dynamics is depicted by the gray (positive) edges.
For a video of this simulation please see youtu.be/U0bWaXCeayY.

V. SIMULATION RESULTS

Having analyzed the local behavior of the proposed mod-
els, we examine the behavior of these models via simulation.
Figure 1 shows a representative simulation of the Abelson
and threshold-based dynamics. In this run, the Abelson
dynamics quickly converge to the all not-adopt consensus.
The threshold-based dynamic takes longer to converge to a
stable equilibrium in E∗, given by (12). We note that the
final equilibrium outcome is heavily dependent on the initial
opinions, as there are many possible stable fixed points the
dynamics could converge to. We observe individuals whose
opinion oi(t) changes directions before finally settling at
either o∗i = 0 or 1. The simulation of the two models is
run on an undirected, unweighted geometric random network
with thirty nodes, serving as both the opinion and product
network, GO and GP . The parameters are δi = 1, βij =
.15, τi = .5 for all nodes i, j, and the max eigenvalue of
the network is λmax = 6.8146. The initial condition of the
simulations, chosen uniformly at random on [0, 1]2N , are the
same for both models.

The behavior of this coupled system leads the question:
does influence from the adoption or opinion network drive
the dynamics, or do they drive each other? Uncoupled from

http://youtu.be/U0bWaXCeayY


Fig. 2. The equilibria of simulations employing the Abelson model
(Left), the Bounded Confidence model (Middle), and the Altafini model
(Right) with the same conditions as the simulations in Figure 1 except
dotted lines indicate negative edges, β = .5, and the confidence parameter
ε = .1: large nodes correspond to x∗i = 1 and small nodes correspond
to x∗i = 0. The largest diameters indicate oi(0) = 1 and the smallest
diameters indicate oi(0) = 0. The network for the SIS dynamics is depicted
by the gray (positive) edges. For a video of this simulation please see
youtu.be/BXVidqntYtA

the opinion dynamics, the adoption state x(t) would converge
to its endemic equilibrium x∗ � 0, since the parameters
satisfy the condition for endemic stability, δ/β < λmax
[5]. Without opinions, each node reaches an intermediate
value of adoption x∗i whose value depends on its position in
the network. When coupled with opinions for both Abelson
and threshold-based dynamics, the xi(t) are driven to either
x∗i = 0 or 1, with their final opinions agreeing with their final
adoption decisions. Given the difference in possible equilib-
ria outcomes between the two models, the coupled opinion-
adoption model is sensitive to the choice of opinion dynamic.
Thus, opinions have a significant role in determining the final
adoption state.

The final state of simulations of the bounded confidence
(8) and Altafini models (9), variants of the Abelson opinion
dynamics, are shown in Figure 2. The coupled bounded
confidence dynamics converge to the all adopt equilibrium,
exhibiting the same behavior as the Abelson model. This is
surprising to observe, considering that bounded confidence
opinion dynamics tend to form clusters of many different
opinion levels. The coupled Altafini dynamics can exhibit
final behavior similar to the threshold-based opinion model.
However, static negative edges must be specified to attain
such polarization. Hence while the threshold model has the
possibility to reveal structure in a network, the Altafini model
requires structure to be explicitly defined.

Together Figure 1 and Figure 2 show that the two primary
opinion models considered in this paper are sufficient to
influence the outcome of the product spread away from the
endemic state and to capture diverse equilibrium outcomes,
even over a simple graph.

VI. CONCLUSION

We have presented a framework that models opinion-
dependent product spread over a network of agents. To
ground the framework, we studied two distinct opinion
spread dynamics and their effect on the population’s propen-
sity to adopt the product. The choice of opinion dynamic
determines the stable outcomes of the coupled system, which
are qualitatively different between the two models. In Sec-
tion III, when opinions follow Laplacian consensus-based
dynamics, the entire population either becomes adopters or
non-adopters. In the threshold-based opinions of Section

IV, cliques of adopters and non-adopters can form. In the
case where product adoption run in isolation would have
reached an endemic adoption state, we find that the coupled
adoption state reaches a different equilibrium as the infection
parameters have been modified by the opinion. This leads us
to conclude that the opinion dynamics drive the equilibrium
state of the system.
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[17] A. Khanafer, T. Başar, and B. Gharesifard. Stability properties of
infected networks with low curing rates. In Proc. of the American
Control Conference (ACC), pages 3579–3584, June 2014.

[18] C. Canuto, F. Fagnani, and P. Tilli. A eulerian approach to the analysis
of rendez-vous algorithms. IFAC Proceedings Volumes, 41(2):9039–
9044, 2008.

[19] V. D. Blondel, J. M. Hendrickx, and J. N. Tsitsiklis. Continuous-time
average-preserving opinion dynamics with opinion-dependent commu-
nications. SIAM Journal on Control and Optimization, 48(8):5214–
5240, 2010.

[20] F. Harary et al. On the notion of balance of a signed graph. The
Michigan Mathematical Journal, 2(2):143–146, 1953.
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