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Abstract— In this paper, we study the global stability prop-
erties of a multi-agent model of natural resource consumption,
which balances ecological and social network components in
determining the consumption behavior of a group of agents.
Recently, it was shown that if the social network component of
the model is leaderless, a condition that ensures that no single
node has a greater social influence than any other node on the
dynamics of the resource consumption, then the behavior of a
group of agents can be treated in aggregate. This aggregation
facilitates the application of this model to large scale networks,
however it is as yet poorly understood. This paper shows that
any network structure can be made leaderless by the social
preferences of the agents. It is also shown that if the social
network is leaderless, a mild bound on agents’ environmental
concern is sufficient for global asymptotic stability to a positive
consumption value; indicating that appropriately configured
networks can consume without depleting the resource. The
behavior of these leaderless resource consumption networks is
discussed via simulation.

I. INTRODUCTION

In the face of an ever-changing natural climate, under-
standing the behavior of renewable natural resources and
the impact of human consumption on those resources is
important for ensuring long term resource consumption [1],
[2]. Modeling of natural resources offers valuable insights
into the effect of various system components, such as
network structure or the social preferences of the agents,
on consumption. Of particular interest is the equilibrium
behavior of these models, as equilibria can help describe
the long term sustainability of natural resources [3]. The
discussion of long term system behavior must be preceded
by an understanding of the stability properties of the system.

This paper focuses on the study of an agent-based model
of natural resource consumption previously introduced and
studied in [4]–[6]. This model captures insights from the
social sciences on the consumption behavior of humans in a
form that can be analyzed mathematically. Past work on this
model has sought to understand the behavior of the model
and has considered stability of this model in the two agent
case. This paper extends the consideration of stability to
consider n agents interacting over a leaderless network.

The overall system consists of an ecological sub-model,
describing the resource dynamics, and a social sub-model,
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describing the consumption behavior of the agents. The eco-
logical sub-model is based on the Gordon Schaefer model,
which represents a class of well studied dynamic processes in
population biology, ecological economics and other related
disciplines [7], [8]. The stability of the Gordon-Schaefer
model, as well as similar logistic growth models, has been
studied extensively in isolation from the social processes
which drive human consumption behavior [9]–[12].

The social sub-model describes the process through which
agents decide to change their resource consumption. This
process is influenced both by the state of the resource as
well as the consumption of neighboring agents. The influence
of the agents on each others’ consumption is similar to
how agents influence each other in mathematical models of
opinion formation [13] and consensus in cooperative multi-
agent systems [14]. The dependence of the agents’ resource
consumption on the state of the resource appears as an exoge-
nous factor or time-varying bias in the overall dynamics (see
[15], [16] for similar models). An important component of
the social process is the underlying social network structure,
which influences the ability of a community to successfully
manage its natural resources [17], [18].

This paper studies the behavior of a leaderless consump-
tion network; in these networks no one agent will drive
the social network component of the model more than
any other agent in the network. This assumption allows
an aggregation of individual state nodes [5], facilitating an
understanding of the system-level behavior. Discussing a
consuming population in aggregate is a common tool for the
study of resource consumer social networks [19] and actions
taken to change behavior often happen at the community
level [18]. Therefore understanding leaderless networks is an
important step towards the application of this model. As will
be shown, leaderless networks can describe a wide array of
network topologies and exhibit a rich class of stable system
behaviors on the individual scale.

The rest of the paper is organized as follows. Section II in-
troduces the consumption model and discusses its properties.
Section III discusses the leaderless condition and presents a
Lyapunov based proof for global stability of the system. In
Section IV the behavior of leaderless systems is studied in
simulation, with a discussion and conclusion in Section V.

II. SYSTEM DYNAMICS

This section presents the dynamics governing the re-
source quantity and consumer behavior in the coupled socio-
ecological system. We first discuss each sub-model and then
give the aggregate leaderless consumption model.



A. The Ecological Sub-model

The ecological component of the system is assumed to
consist of a single renewable resource with quantity at time
τ represented by R(τ). In the absence of consumption,
the resource grows at intrinsic growth rate r and saturates
at carrying capacity Rmax. The resource is connected to
a consuming population consisting of n individuals. Each
individual can harvest the resource by exerting consumption
effort ei(τ), where i ∈ {1, . . . ,n} represents a single
consumer. The resource dynamics are assumed to follow the
standard Gordon-Schaefer model [8] with catch coefficient
equal to one, which is given as

dR(τ)

dτ
= rR(τ)

(
1− R(τ)

Rmax

)
−R(τ)

n∑
i=1

ei(τ). (1)

Note that Equation 1 implies that the effort ei(τ) represents
the fraction of i’s harvest w.r.t the resource R(τ), while
the actual harvest is given by the product ei(τ)R(τ) (the
interested reader is directed to [4] for detailed discussions
on the origin of the model).

B. The Social Sub-model

The social sub-model is based on Festinger’s theory of
social comparison processes [20], which postulates that hu-
man beings evaluate their decisions by reflecting on both
objective and social information. In the context of natural
resource consumption, objective information corresponds to
the state of the resource and social information corresponds
to the consumption of other socially connected individuals
[21]. To balance between objective and social information,
the change in consumption effort of the agent is given as a
weighted sum of both ecological and social factors.

The ecological factor for consumer i is given by R(τ)−Ri,
where Ri ∈ R represents the perceived scarcity threshold
of i, below which agent i considers the resource to be
scarce, and above which she considers it to be abundant.
The ecological factor is weighed by ai ∈ (0,∞), which
represents the set of factors to which agent i attributes the
state of the natural resource. An ecological attribution ai → 0
represents a consumer that attributes the state of the resource
entirely to the actions of the consuming society (including
the agent itself), while increasing values of ai correspond to
the individual attributing the current state of the resource to
natural causes (droughts, wildfires, heavy rain, etc).

The ecological factor is balanced by a social component,

given by
n∑

i=1

ωij(ej(τ) − ei(τ)), which is the difference

between i’s consumption and that of the other socially con-
nected consumers in the population. The graph connectivity
is captured by ωij ≥ 0 which is the strength of the social tie

directed from j to i. We assume that
n∑

j=1

ωij = 1 and ωii =

0 ∀ i ∈ {1, . . . ,n}. For convenience, we assume a single
connected component; however no presented results rely on
that fact. The social factor is weighed by si ∈ (0,∞), the
social-value orientation of i. Social-value orientations si → 0

represent extremely non-cooperative individuals, which will
ignore the actions of their network neighbors. Conversely,
increasing values of si correspond to increasingly cooperative
individuals.

Combining the social and ecological component gives the
dynamics of the consumption effort for consumer i as

dei(τ)

dτ
= ai(R(τ)− Ri) + si

n∑
j=1

ωij(ej(τ)− ei(τ)), (2)

where the ecological and social factors have been weighed in
accordance with findings in social psychological research on
consumer behavior [4]. In particular, individuals that attribute
blame to natural causes tend to give more importance to
ecological information and vice versa. Similarly, cooperative
individuals are more concerned with maximizing equality in
consumption than non-cooperative ones, and as such will be
further influenced by the social factor.

It is important to note that (2) captures a general notion
of effort which is based in the ecology literature [8]. As
such, the effort ei can take on negative values. Negative
effort relates to contributing to the sustenance of the resource
(as opposed to harvesting from it). The interested reader is
directed to [4] and included references for physical interpre-
tations of this phenomenon and its implications on the overal
scope of the model.

C. Non-dimensionalized Socio-Ecological System
In order to reduce the dimensionality of the parame-

ter space, the system given by Eq. (1) and (2) is non-
dimensionalized, which also has an added benefit of allowing
comparison between system parameters. The dynamics of the

non-dimensionalized state of the resource x =
R(τ)

Rmax
and

the non-dimensionalized consumption yi =
ei
r

are given as
follows

ẋ = (1− x)x− x
n∑

i=1

yi,

ẏi = bi

(1− νi)(x− ρi) + νi
n∑

j=1

ωij(yj − yi)

 ,

(3)

where i ∈ {1, . . . ,n},

bi =
aiRmax + rsi

r2
, νi =

rsi
aiRmax + rsi

,

and the derivatives ẋ and ẏi are taken with respect to
the non-dimensional time t = rτ . It can be shown using
standard approaches, e.g., [22, Theorem 3.1], that a unique
solution to this system exists for all time. Below we will
also use the notation αi = 1− νi. The non-dimensionalized

threshold ρi =
Ri

Rmax
is called the environmentalism of i.

The parameter bi is the sensitivity of i, which represents
i′s openness to change in her consumption. The final pa-
rameter, νi, is called the socio-ecological relevance of i and
represents the importance that i gives to social information
relative to ecological information in the process of changing
consumption behavior.



D. Influence and Leadership

The consumption of i is influenced by the consumption of
all other agents that are socially connected to her. This notion
of connectivity is captured in Eq. (3) via the parameters ωij ,
which denote the strength of the social tie directed from j
to i. If ωij = 0 this implies that there is no social link
from j to i, allowing the collection of ωij’s to specify the
topology of the underlying social network. The aggregate
influence of the rest of the agents on i’s consumption is
given by

∑n
j=1 biνiωij and is called the in-influence of i.

The aggregate influence that i exerts on the other agents in
the network is given by

∑n
j=1 bjνjωji and is called the

out-influence of i. The difference between the out-influence
and the in-influence is called the net-influence of i and
determines the role of i in the network as a leader (positive
net-influence), a follower (negative net-influence) or neutral
(zero net-influence). In this paper, we consider cases in which
all agents in the network are neutral, i.e. the network is
leaderless.

III. GLOBAL ASYMPTOTIC STABILITY OF LEADERLESS
NETWORKS

In this section, two assumptions on the network and
parameters are introduced before transforming the non-
dimensionalized dynamics in Eq. (3) into a form more
amenable to stability analysis. Following this, global asymp-
totic stability to an equilibrium point is shown for the non-
dimensionalized dynamics in Equation (3).

A. Leaderless Networks

The section considers the first of two assumptions on the
system under consideration.

Assumption 1: The network is leaderless, i.e.,

n∑
j=1

(
ωijbiνi −ωjibjνj

)
= 0

for all i ∈ {1, . . . ,n}. 4
See [5] for a further discussion of the implications of this

assumption. The assumption implies that the net-influence
(as defined in Section II-D) of each individual is zero i.e.,
there are no leaders or followers in the network. As seen
later, this implies that in aggregate the social network does
not have an effect on resource consumption, though the social
network still has a contribution to individual consumption
behavior. While this may appear to be a strong assumption
on the network, we demonstrate that it is possible to have
any network topology be leaderless based on the social value
orientations si = rbiνi.

Lemma 1: For any set of network weights ωij , there
exists a set of social value orientations {s1, s2, . . . , sn} that
renders the network leaderless.

Proof: The leaderless condition can be expressed as∑n
j=1

(
ωijsi−ωjisj

)
= 0, ∀i. Consider the matrix of edge

weights,

W =



−
(∑n

j=2ω1j

)
ω21 . . . ωn1

ω12 −
(∑n

j=1
j 6=2

ω2j

)
. . . ωn2

...
...

. . .
...

ω1n ω2n . . . −
(∑n−1

j=1 ωnj

)


.

If the vector of social value orientations s ∈ null(W ) then
the system is leaderless. Notice that the matrix WT has
rows that sum to 0, i.e. the vector 1n is an eigenvector with
eigenvalue 0. As W and WT have the same eigenvalues
[23], W also has an eigenvalue at 0. Further, from the
structure of W , any element of the null space must have all
nonzero elements with the same sign. To see this, suppose
e ∈ null(W ), with ei < 0 while ej > 0, ∀j 6= i. Then
W (i, :)e > 0 and e /∈ null(W ). Therefore for a given W
there exists an element wise positive s ∈ null(W ) and if
the agents have those social value orientations the network
is leaderless.
Lemma 1 shows that any graph, including those commonly
found in complex networks such as scale free [24] and
small world [25] networks, can be rendered leaderless by the
appropriate social value orientation. As such, Assumption 1
is widely applicable. The behavior of the resource dynamic
over a leaderless network will be studied in Section IV, after
the stability of the system has been established.

B. Dynamics

This section considers a second assumption as well as its
implication for the system level dynamics. In what follows,
the following new state variables will be considered

z = log x and u =

n∑
i=1

yi.

Further the following assumption, which bounds the max-
imum possible value of ρi for each agent, will be enforced.

Assumption 2: For all i ∈ {1, . . . ,n}, ρi ∈ (0, 2). 4
Because ρi is the normalized value of Ri, Assumption 2

implies that Ri ∈ (0, 2Rmax). This is a rather weak assump-
tion as few agents are expected to have Ri > Rmax, i.e. a
scarcity threshold larger than the resource carrying capacity.

With these assumptions in place, the transformed network
level dynamics will be derived. Computing the time deriva-
tive of z gives

ż =
ẋ

x
= 1− x−

n∑
i=1

yi = 1− ez − u.

Differentiating u with respect to time and expanding gives

u̇ =

n∑
i=1

ẏi,

u̇ =

n∑
i=1

(
biαix− biαiρi

)
−

n∑
i=1

n∑
j=1

biνiωij(yi − yj)

=

n∑
i=1

(
biαie

z − biαiρi
)



−
n∑

i=1

[ n∑
j=1

(
ωijbiνi −ωjibjνj

)]
yi

=

n∑
i=1

biαie
z −

n∑
i=1

biαi −
n∑

i=1

biαi(ρi − 1),

where the sum containing yi has vanished due to Assump-
tion 1. Continuing,

u̇ =

[ n∑
i=1

biαi

]
(ez − 1)−

n∑
i=1

biαi(ρi − 1)

= K1(e
z − 1)−K2,

where

K1 :=

n∑
i=1

biαi and K2 :=

n∑
i=1

biαi(ρi − 1).

From these definitions, K1 is manifestly positive because
it is a sum of positive terms. Under Assumption 2, it also
follows that

|K2| =
∣∣∣∣∣

n∑
i=1

biαi(ρi − 1)

∣∣∣∣∣ ≤ max
i∈{1,...,n}

|ρi − 1|
n∑

i=1

biαi

= K1 max
i∈{1,...,n}

|ρi − 1| ≤ K1,

where the last inequality follows from Assumption 2.
The (z, u) dynamics thus take the form

ż = 1− ez − u
u̇ = K1(e

z − 1)−K2.

Next, the equilibrium of the (z, u) system is computed to
translate the equilibrium of the system to the origin.

C. Equilibrium

The following lemma provides the uniqueness and value
of the (z, u) system’s equilibrium point.

Lemma 2: The (z, u) system has a unique equilibrium
point located at

z0 = log

(
K2

K1
+ 1

)
u0 = −K2

K1
.

Proof: Setting u̇ = 0 we find

u̇ = K1(e
z − 1)−K2 = 0,

which immediately provides

z0 = log(K2/K1 + 1).

Setting ż = 0 gives

ż = 1− ez − u = 0,

where setting z = z0 results in

ż = 1−
(
K2

K1
+ 1

)
− u = 0.

Solving for u0 then provides

u0 = −K2

K1
.

By Lemma 2, the equilibrium value of the resource, R0, is

R0 =

(
K2

K1
+ 1

)
Rmax =

∑n
i=1 aiRi∑n
j=1 aj

.

Here, the value of R0 is always positive as Ri ∈
(0, 2Rmax),∀i.

Having computed the equilibrium point of the system, we
define a coordinate shift by

v = z − z0, w = u− u0,

resulting in the dynamics

v̇ = ż = 1− ez − u = 1− ev+z0 − (w + u0),

= −evez0 − w + 1 +
K2

K1
= −evez0 − w + ez0 ,

= −ez0(ev − 1)− w,
where we have used ez0 = K2/K1 + 1.

For w, the dynamics are governed by

ẇ = u̇ = K1(e
z − 1)−K2

= K1e
v+z0 −K1 −K2

= K1e
v

(
1 +

K2

K1

)
−K1 −K2

= K1e
v +K2e

v −K1 −K2

= (K1 +K2)(e
v − 1).

The final system dynamics to be analyzed are

v̇ = −ez0(ev − 1)− w (5)
ẇ = (K1 +K2)(e

v − 1),

whose unique equilibrium point is the origin.

D. Global Stability

The following theorem demonstrates asymptotic stability
of trajectories of the system in Equation (5) to the origin.

Theorem 1: Under Assumptions 1 and 2 the origin is
globally asymptotically stable in Equation 5.

Proof: Consider the Lyapunov function

V (v, w) = ev − v − 1 +
(K1 +K2)

−1

2
w2,

which is positive definite, satisfies V (0, 0) = 0, and is
radially unbounded. Differentiating V with respect to time,

V̇ = ev v̇ − v̇ + (K1 +K2)
−1wẇ

= ev(−ez0(ev − 1)− w) + ez0(ev − 1)

+ w + w(ev − 1)

= − ez0ev(ev − 1)− evw + ez0(ev − 1)

+ w + w(ev − 1)

= −ez0(ev − 1)2 + w(ev − 1)− w(ev − 1)

= −ez0(ev − 1)2 ≤ 0.

Here, LaSalle’s invariance principle can be used to prove
global asymptotic stability of (0, 0) by showing that the set



V0 = {(v, w) | V̇ (v, w) = 0} contains only the trivial
trajectory

(
v(t), w(t)

)
≡ (0, 0) [22].

From above, observe that V̇ (v, w) = 0 only for trajectories
of the form (0, w). Plugging this into the system dynamics
in Equation (5) gives

v̇ = −w, ẇ = 0

for such trajectories. Then the only invariant trajectory in
V0 has w ≡ 0 because v̇ = 0 must hold to ensure that the
system remains in V0.

IV. SIMULATIONS

This section considers the behavior of leaderless network
topologies in simulation, focusing specifically on the case
of the star graph. The star graph is of central importance
to the study of complex networks [26]. The star graph also
has a node, the center of the star, that might be expected
to be the leader of a social network. Despite this, there are
many leaderless social networks that can evolve over the star
graph. Three leaderless networks on the same star topology
are shown in Figure 1. Note that as more influence is given
to a node, the node tends to be more cooperative for the
network to remain leaderless.
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Fig. 1: 3 Leader-Less Star Graphs for (1a) random weights,
(1b) uniform weights, (1c) skewed weights. Each edge is
labeled with its weight and each node is labeled with its
social value orientation.

The resource is assumed to have a carrying capacity
Rmax = 1, a growth rate r = 1, and a random initial condition
that was fixed across simulations. The network was run with
an attribution vector a and a set of scarcity thresholds R:

a =


0.4340
0.2046
0.1891
0.6935
0.2108

 , R =


0.2262
0.4788
0.4582
1.1745
0.8483

 .

R(t)

t

0
0

1.4

25

Fig. 2: Level of the Natural Resource over time of the three
5 node leaderless star graphs shown in Figure 1.

The time history of the resource level was identical for all
3 systems and is shown in Figure 2. This is due to the
fact that the state of the resource is based on aggregate
consumption through the R(τ)

∑n
i=1 ei(τ) term in Equation

1. The leaderless condition causes the social component to
be canceled out when considered in aggregate. Therefore
the resource usage is dependent only on the attributions and
scarcity thresholds which are identical for the 3 systems.
This can also be seen from Lemma 2 which shows that the

equilibrium value of the resource is
∑n

i=1 aiRi∑n
j=1 aj

= 0.74.

While the resource behavior is identical, the individual
usage across networks can be quite different. The individual
usages for each of the 3 systems are shown in Figure 3. In
Figure 3a and 3b the levels of consumption effort remains
low, with those agents that have high scarcity thresholds
and environmental attribution contributing negative effort
to balance the usage of the other agents. In Figure 3c,
the presence of non-cooperative agents drives the scale of
individual resource effort to be an order of magnitude larger.

V. DISCUSSION AND CONCLUSION

This paper has shown a number of interesting properties of
leaderless networks: that they can exist on arbitrary network
topologies, that they are stable under mild bounds on the
agent’s scarcity thresholds and that on an individual level
the consumption effort can be quite different even with the
leaderless assumption. Together these results have broadened
the understanding of leaderless consumption networks, lay-
ing the foundation for the application of this model in large
scale networks and the possibility of using this model to
design intervention strategies at a community level.

There are other aspects of the behavior of this model
worth mentioning. It is interesting to note that the form
of the individual consumption effort in Eq. (2) is similar
to the consensus dynamic [13], [14], however in leaderless
consumption networks the individual consumptions do not
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Fig. 3: Evolution of Individual Resource Consumption for 3
Leader-Less Star Graphs: (3a) the random weighted graph
shown in (1a). (3b) the uniform weighted graph shown in
(1b). (3c) the skew weighted graph shown in (1c). (3d) maps
the position of the nodes to trajectories

converge to a single uniform steady-state usage, as would
occur under consensus dynamics.

To see why this behavior occurs, recall that the model
allows negative resource effort. Here, the stability of the
equilibrium point requires that an agent (here agent 4 as
shown in Figure 3) contributes resource to ensure balance
with the usage of the other agents. As the network is
leaderless, the equilibrium behavior of the system depends
on the scarcity thresholds. Agent 4 has a scarcity threshold,
R4 = 1.17, which is significantly higher than the thresholds
of its neighbors. This higher threshold drives the agent to
balance out the usage of the agents that have lower thresholds
and which therefore consume the resource.

While this system is stable, as shown by Theorem 1 and
displayed in Figure 2, this system level behavior would be
worrying as the progress of a natural resource. Imagine,
for example, the panic of a populace if the level of the
local water reservoir were to change as indicated in Figure
2: The reservoir shifts quickly from being almost empty
to overflowing and then starts heading back down towards
empty before reaching equilibrium.

This points to the fact that stability, while vital for under-
standing the behavior of a system, is not the only property
of a natural resource system which must be understood.
There are other questions, those related to sustainability,
which must be addressed about these models before they
are used to inform decision making in resource governance
problems. For example, can humans use this resource in

the short term without risking the depletion of the resource
in the long term? Future work is required to bridge this
gap between stability tools and the characterization of an
ecological system as sustainable.
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[19] Christina Prell and Örjan Bodin. Social Networks and Natural
Resource Management: Uncovering the social fabric of environmental
governance. Cambridge University Press, 2011.

[20] Leon Festinger. A theory of social comparison processes. Human
relations, 7(2):117–140, 1954.

[21] Hans-Joachim Mosler and Wernher M Brucks. Integrating commons
dilemma findings in a general dynamic model of cooperative behavior
in resource crises. European Journal of Social Psychology, 33(1):119–
133, 2003.

[22] Hassan Khalil. Nonlinear Systems. Prentice Hall, 2002.
[23] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge

University Press, 1990.
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