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Abstract— This paper considers the design of networks for
sustainability in the context of a socio-ecological model of
natural resource consumption. Recent work has developed a
notion of sustainability motivated by the ecological modelling
literature and a set of conditions on the network structure &
system parameters that ensure that this sustainability definition
is satisfied. This paper translates these sustainability criteria
into an optimization problem that optimizes both a network’s
topology and its interaction weights to make the sustainability
time horizon as long as possible. This problem treats system
stability as a constraint, and it enforces an “edge budget” for
the network, which reflects realistic resource limitations by
limiting the number of edges that a network can contain. The
introduced optimization problem is then solved analytically for
a network of homogeneous agents, and numerical results are
shown for heterogeneous agents. Finally the derived optimal
network topologies are shown to have varying impacts on the
behavior of the resource consumption model. Together, these
results suggest that homogeneity in the underlying network
structure promotes sustainability in the sense defined herein.

I. INTRODUCTION

Many complex systems such as river ecologies, fisheries,
irrigation networks, forests and wetlands are characterized
by the interactions between the biophysical environment and
human societies. Human activity impacts natural ecologies
via pollution, climate change, resource depletion, renewal
and engineered modifications. Conversely, the scarcity or
excess of a natural resource shapes human behavior in
complex ways. These interactions, often in the form of
feedback loops between environment and society are studied
under frameworks of socio-ecological systems [?], coupled
human-natural systems [?], and various others [?], [?].

We study here the sustainability of common pool re-
sources, in which many agents have access to a shared
resource. A key phenomenon in such society coupled re-
sources is the so-called tragedy of the commons [?], whereby
human agents with unrestricted access to a common pool
resource find no economic incentive for conservation, leading
to rapid exhaustion of the resource from collective overuse.
The tragedy lies in the fact, that despite full knowledge
of this eventuality, agents find themselves compelled to
behave myopically. This is one instance of the more general
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problem of social dilemmas [?]. Game theoretic treatment of
such phenomena is demonstrated in the equilibria of some
canonical non-cooperative games [?] and in related models
in evolutionary game-theory [?], [?]. A political science
perspective is given by Olson’s Logic of Collective Action
[?] for similar situations where individual self-interest leads
to collectively sub-optimal outcomes in large groups.

The tragedy narrative discussed above has been seriously
challenged by groundbreaking work on socio-ecological
systems, led by the 2009 Nobel economics prize winner,
Professor Elinor Ostrom [?]. The central point of her work is
that tragedies occur only in situations where agents remain
isolated from each other, which rarely occurs in the real
world [?]. This work suggests that social connections across
both individuals and institutions play a key role in the
formation of sustainable communities [?]. The importance
of the underlying social network has also been highlighted
in other experimental studies (for instance, [?], [?], [?]).

While this body of work provides clear evidence for the
importance of societal connectivity for promoting sustain-
ability, it does not prescribe how beneficial outcomes depend
on network structure. This is the research gap that we begin
to address in this paper by borrowing tools from networked
control systems, distributed optimization and cyber-physical-
social systems. Specifically, we attempt to discover network
structures that avert tragedy and promote sustainability in
a particular analytic model of socio-ecological systems [?]
with the hope that the lessons learned can be applied to other
coupled human-environment systems.

Understanding the interplay between network structure
and dynamics that evolve over that structure has been
studied extensively in the controls and network science
literatures [?], [?], see for instance the work relating net-
work structure to controllability properties [?], [?]. Often
a network structure is assumed which then drives behavior,
with significantly less attention devoted to designing network
structures to achieve certain properties. One notable line of
“network design” work pertains to designing networks of
oscillators to ensure synchronization behavior [?], [?], [?],
including in sensor network design [?].

In this paper, we consider network designs that promote
sustainability. While the network is primarily formed through
social connections between consumers, these connections are
often supported through physical entities, e.g. physical con-
nections such as canals for water resources, which are subject
to resource limitations. We account for these restrictions by
enforcing an “edge budget” that upper-bounds the number
of edges a network can have. The constraint appears as a 0-
norm bound on a matrix of edge weights. Problems with 0-



norm terms have been considered in the compressed sensing
literature, e.g., [?], [?], [?]. It is common to replace a non-
convex 0-norm term with a convex 1-norm regularization
term, which has been shown to give sparse solutions in many
cases [?]. However, in a physical network even an edge with
very small weights can be costly, and thus we retain the 0-
norm representation. Despite its non-convexity, we will see
that surprisingly good numerical results can be attained here.

Recent work by the authors [?] introduced a formal
definition of sustainability based on the ecological modelling
literature as well as conditions for stability and sustainability
of resource consumption. This work was descriptive, asking
if a given realization of the socio-ecological model was
sustainable. Here we extend this characterization to consider
a design question: for a given population of agents, what is
the most sustainable network structure?

The rest of the paper is organized as follows. Section II
describes the considered socio-ecological model and Section
III reviews and extends results on the sustainability of the
model. Section IV presents the optimization problem, with
analytical results in Section V. Section VI shows numerical
results and the behavior of the socio-ecological model. The
paper concludes in Section VII.

II. NETWORK CONSUMPTION MODEL

Here we define the dynamics of the coupled socio-
ecological system. The model consists of two parts: the
ecological sub-model, describing the dynamics of the re-
source, and the social sub-model, describing the consump-
tion dynamics of individual agents. We present a non-
dimensionalized version of the model that is subsequently
used in this study. The interested reader is referred to the
initial presentation [?] and subsequent analyses [?], [?], [?]
for full details on the foundations of the model.

The model considers a single natural resource which is
consumed by a population of n individuals. The resource
dynamics are governed by the standard model of logistic
growth. The dynamics are given by ẋ = (1−x)x−x

∑n
i=1 yi,

where x is the quantity of resource normalize with respect
to its carrying capacity and yi is the consumption of agent i
normalized with respect to the growth rate of the resource.

Results from the ecological modelling literature suggest
that consumers balance social and ecological information in
making consumption decisions, for an extended discussion
and motivation of the model see [?]. The impact of these
two factors on agent consumption is modeled as

ẏi = bi

αi(x− ρi) + νi

n∑
j=1

ωij(yj − yi)

 ,

where i ∈ {1, . . . , n}. Here αi ∈ (0, 1) and νi ∈ (0, 1) are
the weights representing the relative importance that i gives
to the ecological and social factors respectively. Due to the
normalization it holds that αi + νi = 1. ρi ∈ R is called the
environmentalism of i and represents the threshold below
which i considers the resource to be scarce and above which
she considers it to be abundant. bi > 0 is the sensitivity of

i and denotes i’s openness to change in her consumption.
Finally, ωij ∈ [0, 1] is the strength of the social tie directed
from j to i, and we assume the following:

Assumption 1: For all i ∈ {1, . . . , n}, we have ωii = 0
and

∑n
j=1 ωij = 1. 4

A. Coupled Socio-ecological System

Here we give the complete system describing the coupled
dynamics of the resource growth and consumer behavior in
compact notation. Define the vector y = (y1, y2, . . . , yn)>

as the vector containing all individual consumptions, and
the vector ρ = diag(ρ1, . . . , ρn) as the vector contain-
ing all scarcity thresholds. Further define the matrices
A = diag(α1, . . . , αn), B = diag(b1, . . . , bn), V =
diag(ν1, . . . , νn), and

T =


1 −ω12 −ω13 · · · −ω1n

−ω21 1 −ω23 · · · −ω2n

...
...

...
. . .

...
−ωn1 −ωn2 −ωn3 · · · 1

 .

The coupled socio-ecological system is then of the form
ẋ = (1− x)x− x111>y,

ẏ = BA(x111− ρ)−B V T y.

Finally, we define the parameter θi = νi
αi

which can be
regarded as a measure of how social i is. The matrix Θ =
diag(θ1, θ2, . . . , θn).

III. SUSTAINABILITY BOUNDS

In this section we review some key results from [?] which
motivate the problem discussed in the paper. In [?], stability
was shown under the following three assumptions:

Assumption 2: The matrix
(
A111111> + V T

)−1
exists and

111>
(
A111111> + V T

)−1
A(111− ρ) < 1. 4

Assumption 3: For all i∈{1,...,n}, θi ≥
∑n
k=1
k 6=i

ωkiθk. 4

This condition is sufficient to imply T>Θ + ΘT � 0 (via
Gershgorin’s Circle Theorem), which was used to show
stability in [?]. Assumption 3 has the advantage of being
locally checkable by agent i. Conversely, T>Θ + ΘT � 0
enforces the stability criteria at the network-level. It will be
used in formulating network-level design problems below.

Assumption 4: The graph connecting agents is strongly
connected. 4
Also in [?], the stability results were extended to consider
a notion of sustainability in which the state of the resource
was guaranteed to satisfy vmin ≤ x ≤ vmax and dmin ≤
ẋ ≤ dmax for t ∈ [0, tmax]. In this paper, the parameters
vmin, vmax, dmin, dmax are considered intrinsic to the re-
source and we seek to understand how the underlying graph
topology relates to the sustainability time horizon tmax. To
do so requires a novel lemma:

Lemma 1: Consider γ0(T )=ln
(
1−111>(A111111>+V T)

−1
A(111−ρ)

)
.

Under Assumption 1 and 2, there exist constants a and b
such that γ0(T ) ∈ [a, b], ∀T .

Proof: Under Assumption 1, the individual elements
of T are in [0, 1], and the set of admissible matrices T is
therefore a compact subset in Rn×n. Under Assumption 2,



γ0(·) : Rn×n → R is a continuous function of T , which
implies that it maps the compact set of admissible matrices T
to a compact set in R, proving the lemma.

Note also that from the structure of γ0, we expect varia-
tions in T to have a relatively small impact on the resulting
γ0. This further justifies recasting the sustainability bounds
of [?] in terms of the result of Lemma 1.

Assumption 5: It holds that vmin < vmax, vmax > 0,
vmin < v(0) < vmax, and dmin < 0 < dmax. 4

Theorem 1: (from [?]) Let Assumption 5 hold. Define
ξ1 = ea(evmax − 1), ξ2 = v(0)− tmaxeb(evmax − 1)− vmin,
ξ3 = dmax+ea(evmin−1), and ξ4 = −dmin−eb(evmax−1).
We assume that, for all i ∈ {1, 2, 3, 4}, ξi > C1, where
C1 = ‖w(0)‖1 + tmaxe

γ0(evmax − 1)
∑n
i=1 biαi. Then the

system is sustainable if

‖T‖1 ≤
1

βtmax
log

 min
i∈{1,2,3,4}

ξi

C1

 , (1)

where β = maxi biνi.
Now the main theorem of the paper can be proven.
Theorem 2: For a given set of {vmax, vmin, dmax, dmin}

and model parameters, the sustainability bound tmax in Eq.
(1) can be maximized if and only if ‖T‖1 is minimized.

Proof: The network structure enters the sustainability
bound of Eq. (1) solely through the term ‖T‖1. To see that
‖T‖1 should be minimized, consider the function

g(tmax) =
1

βtmax
log

 min
i∈{1,2,3,4}

ξi

C1

 .

The function g(tmax) is a positive, decreasing function
of tmax when ξi > C1. The function g(tmax) takes
two basic forms based on which of the ξi is the min-
imum. If ξ1, ξ3, or ξ4 is the minimum then g(tmax) =

1
βtmax

log
(

c1
c2+c3tmax

)
, where ci, i ∈ {1, 2, 3}, are positive

constants, with c1 = ξi, i ∈ {1, 3, 4} depending on the min-
imum, c2 = ‖w(0)‖1, and c3 = eγ0(evmax − 1)

∑n
i=1 biαi.

This is manifestly a positive, decreasing function of tmax. If
ξ2 is the minimum, then g(tmax) = 1

βtmax
log
(
c4−c5tmax

c2+c3tmax

)
,

where ci, i ∈ {2, 3, 4, 5} are positive constants with c4 =

v(0)− vmin and c5 = eγ0(evmax − 1). The term (c4−c5tmax)
c2+c3tmax

is positive when ξ2 > C1 and has derivative −(c2c5+c4c5)
(c2+c3tmax)

2

which is negative and well defined for positive tmax, making
g(tmax) a positive decreasing function of tmax when ξi >
C1, ∀i ∈ {1, 2, 3, 4}. Returning to Equation (1), as g(tmax)
is positive and decreasing ‖T‖1 should be minimized to
allow for larger values of tmax.

We will consider the minimization of ‖T‖1 as our primary
problem of the paper.

IV. NETWORK OPTIMIZATION

This section formalizes the network optimization problem
which will be solved analytically and numerically in the
remainder of the paper. Below, we use J to denote the n×n
matrix of all ones. We begin with the following lemma.

Lemma 2: Let T ∈ Rn×n denote the weights matrix as
defined in Section II. Then the matrix 1

2 (T>+T ) is positive

semidefinite, has rank n− 1, and has nullspace spanned by
the vector 111 := (1, 1, . . . , 1)>.

Proof: See Lemmas 8, 9, and 10 in [?].
The following convex constraint gives a necessary con-

dition for strong connectivity. Below, we discuss why we
expect this necessary condition to provide useful results.

Theorem 3: The graph G is strongly connected only
if 1

2

(
T + T>

)
+ J � 0.

Proof: For the sake of contradiction, we assume that
there is some x 6= 0 such that

x>
(

1

2
(T + T>) + J

)
x = 0. (2)

Lemma 2 implies that x>( 1
2 (T+T>))x ≥ 0 and it is easy to

see that x>Jx ≥ 0. Satisfying Equation (IV) requires x 6=
0 to satisfy both x>( 1

2 (T + T>))x = 0 and x>Jx = 0
simultaneously. For x>( 1

2 (T +T>))x = 0, Lemma 2 shows
that we must have x ∈ span{111}, while we have x>Jx = 0
if and only if

∑n
i=1 xi = 0, which we restate as x>111 =

0. Then satisfying Equation (IV) requires x 6= 0 to satisfy
both x ∈ span{111} and x ∈ span{111}⊥, a contradiction.

This necessary condition is “almost” sufficient in a precise
sense. Using the results of [?, Theorem 4.3], it can be shown
that a T satisfying the above has at most one isolated strongly
connected component; here, “isolated” means that there
are no directed edges pointing into the strongly connected
component in question. The inequality in Theorem 3 is
sufficient to imply weak connectivity, and, it will at least give
a weakly connected graph with not more than one isolated
strongly connected component. It has the benefit of being
convex, and we find that a solver typically generates strongly
connected graphs when this constraint is used.

The final constraint which will be enforced is an edge
budget. This edge budget reflects many of the realities of
network design and as will be seen allows the differentiation
between multiple solutions. Enforcing the edge budget can
be done by counting non-zero off-diagonal entries of the
matrix T , which is the number of non-zero entries of T − I .
To do so, we adopt the so-called “0-norm”, often used is
machine learning and compressed sensing applications [?],
[?], [?] to promote sparsity in solutions to various problems.

Definition 1: The matrix 0-norm, denoted
‖ · ‖0 : Rn×n → N, is defined as ‖M‖0 =

∣∣{(i, j) ∈
{1, . . . , n}2 | Mij 6= 0

}∣∣, which is equal to the number of
non-zero entries of its argument. �

The 0-norm is not truly a norm (nor is it convex), though
it is well-studied and there exist computational tools that
accommodate it. The edge budget constraint takes the simple
form ‖T − I‖0 ≤ B. Then the overall problem statement is:

Problem 1: Design a resource consumption network with
weight matrix T that satisfies the following:

minimize ‖T‖1

subject to
1

2
(T> + T ) + J � 0

T>Θ + ΘT � 0

‖I − T‖0 ≤ B.



♦
Problem 1 is non-convex due to the non-convex 0-norm con-
straint. Nonetheless, we will see that analytical and numerical
results can produce useful solutions to this problem.

V. HOMOGENEOUS NETWORKS

In this section we consider networks that are homogeneous
in theta, i.e. θi = θ. It is possible to analytically characterize
solutions to Problem 1 for such networks. We begin with
some definitions. A graph is weight balanced if

∑
k ωki =∑

j ωij , ∀i. By Assumption 1,
∑
j ωij = 1, ∀i so a weight

balanced graph will have
∑
k ωki = 1, ∀i. A graph is k-

regular if each node has in degree k and out degree k. We
refer to the star graph to describe an n node graph where
a single node has in and out degree n − 1 while all other
nodes have in and out degree 1.

Consider the following characterization of ‖T‖1.
Lemma 3: Under Assumption 1, it holds that 2 ≤ ‖T‖1 ≤

n. Further, a weight balanced graph achieves the minimum
and a star graph achieves the maximum.

Proof: To show that 2 ≤ ‖T‖1, note that if the graph
is weight balanced then the absolute value of every column
sums to 2 which implies ‖T‖1 = 2. To see that there can
be no smaller value of ‖T‖1, suppose there exists a set of
weights such that ‖T‖1 < 2. Then by definition of the 1-
norm and of T , this gives rise to a contradiction as there
∃i, s.t.

∑
k 6=i ωki < 1 which implies n =

∑
i

∑
j ωij < n.

We now show that ‖T‖1 ≤ n. Under the assumption that∑
j ωij = 1, ωij ≥ 0, every off diagonal element satisfies

Tij ≤ 1,∀i 6= j. As Tii = 1 and T ∈ Rn×n, the condition
follows directly. In the case of the star graph, there will be
a column which is all ones, so ‖T‖1 = n.
To characterize the optimal solutions to Problem 1, we will
show that a class of graphs achieves the minimum possible
value of the objective function, that ‖T‖1 = 2.

Lemma 4: If θi = θ for all i, Assumption 3 is satisfied if
and only if the graph is weight-balanced.
Proof: (Sufficiency) In Assumption 3, setting θi = θ for all i
gives 1 ≥

∑n
k=1
k 6=i

ωki. If the graph is weight balanced, then∑n
k=1
k 6=i

ωki = 1 for all i and Assumption 3 is satisfied.

(Necessity) Assume the graph is not weight balanced and
Assumption 3 holds. Then there must exist a node i such
that 1 >

∑n
k=1
k 6=i

ωki. Summing over all nodes gives rise to a

contradiction as n >
∑
i

∑n
k=1
k 6=i

ωki =
∑
i

∑
j ωij = n. �

From Lemma 4, we can see that any connected weight
balanced graph will satisfy two of the three constraints of
Problem 1. In fact, the structure of T shows that any weight
balanced graph will minimize the objective ‖T‖1.

Theorem 4: If θi = θ for all i, then any weight-balanced
connected k-regular directed graph with k ≤ B

n is an optimal
solution to Problem 1.

Proof: Note that a k-regular graph has nk edges, so if
k ≤ B

n the graph satisfies the edge budget constraint. The
graph is weight balanced and connected so Assumption 3 is
satisfied by Lemma 4. Assumption 3 is sufficient to show that

T>Θ + ΘT � 0. Therefore the described k-regular graph is
an optimal solution to Problem 1.

These results can be related back to commonly considered
graph structures, to show how these structures relate to
sustainability in the case of homogeneous agents. Cycle
graphs, which are 1- and 2-regular for a directed and bidi-
rectional cycle respectively, easily satisfy Assumption 3 and
are optimal solutions to Problem 1 with small numbers of
edges. In fact, the 1-regular directed graph is the smallest
possible solution with n edges.

Moving away from regular graphs, the line graph can not
be an optimal solution as ensuring that the peripheral nodes
are weight balanced would disconnect the graph. Similarly,
star graphs are particularly poor for sustainability with re-
spect to the objective of Problem 1 as they maximize ‖T‖1,
as discussed in Lemma 3. This seems to suggest that in the
case of homogeneous agents, network structures that allow
social influence to be spread between many agents, by being
homogeneous in degree distribution, improve sustainability.
While the characterization of solutions to Problem 1 is
possible in the case of a network with homogeneous agents,
heterogeneity in θ can greatly restrict the space of feasible
solutions as shown in the following result.

Theorem 5: There exists θi such that there is no feasible
graph structure under Assumption 3.

Proof: As an example consider the feasible solutions
on 3 nodes in the case where θ1 6= θ2 = θ3 = θ. First
consider θ1 = 2θ. Assumption 3 leads to three conditions
θ1 ≥ (ω21 + ω31)θ, θ ≥ ω12

ω21
θ1, and θ ≥ ω13

ω31
θ1 = 1−ω12

ω31
θ1.

The first equation is trivially satisfied as ω21, ω31 ≤ 1. The
second two equations constrain ω12 as ω21

2 ≥ ω12 ≥ 2−ω31

2 .
The only feasible solution is ω21 = ω31 = 1 and ω13 =
ω12 = 1

2 , i.e. a star graph is the only admissible solution. If
instead θ1 = kθ, k > 2 then there is no graph which satisfies
Assumption 3 as the new constraint ω21

k ≥ ω12 ≥ k−ω31

k can
not be satisfied with ω21, ω31, ω12 ≤ 1.
The simulations shown in the next section show cases
where the values of θi are similar enough that solutions
exist An interesting direction for future work would involve
characterizing when these conditions hold, i.e. when agents
are so dissimilar that sustainability is not feasible.

VI. SIMULATIONS

In this section, we consider two sets of simulations.
First the optimization problem 1 is solved numerically for
heterogeneous agents. Then the results for homogeneous
agents are discussed in the context of the behavior of the
socio-ecological system which evolves over the network.

A. Heterogenous Networks

Problem 1 was solved numerically using the YALMIP
software package [?]. Due to the non-convexity of the
problem, the case of a 10 node network is considered here.
For a given number of nodes, the matrix Θ and the edge
budget B must be supplied to fully constrain the problem.

In the following the values of Θ were randomly selected as
Θ = diag([2, 155 5, 036 5, 306 5, 809 6, 878 11, 681 12, 342
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Fig. 1: Graph returned with no edge budget (e.b.) 1a, the
most stringent e.b. 1b, and an intermediate e.b. 1c. 1d: Degree
change over iterations of the algorithm. The average, max,
and min of both in and out degree are shown.

14, 605 16, 488 19, 653]). Extensive simulation suggests that
larger values of Θ prevented numerical issues with the solver.

To understand how the edge budget affects the solution
to Problem 1, the optimization is run multiple times. First it
is run without the edge budget to get a baseline number of
edges for a given Θ, the result of which is shown in Figure
1a. Once the maximum allowable number of edges is deter-
mined from the unconstrained optimization, the optimization
is rerun multiple times. On each iteration the edge budget is
decreased by one until the solver returns that the problem
is no longer feasible. Figure 1 shows example graphs from
a representative run and Figure 1d shows how the degree
changes over iterations. Each graph was checked for strong
connectivity, which was satisfied for all graphs. Figure 1b
shows the graph with the smallest number of edges returned
with 41 edges. Figure 1c shows an intermediate graph in
which a single node (node 1) becomes isolated.

Figure 1d shows that the solver was able to systematically
reduce the average degree of the network. At the same
time, the maximum and minimum degrees show that this
occurred by having nodes with a very small degree. In the
limit as the problem became infeasible, the last high degree
nodes were removed moving towards a more homogeneous
network structure. Taken together with the analytical results,
the simulations suggest that for a given edge budget, it is
better to provide as homogeneous a network as possible,
facilitating as much communication as possible.

B. Resource Behavior

In this section, we return to the dynamics which evolve
over the graphs which were determined by the solution of
Problem 1. To begin we consider the homogeneous network
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Fig. 2: Resource x for Pro-Ecological 2a and Pro-Social
Communities 2b. Individual consumption for Pro-Ecological
cycle 2c and complete graphs 2e. Individual consumption for
Pro-Social cycle 2d and complete graphs 2f.

case, specifically a 10 node graph where θi = θ,∀i ∈
{1, 2, . . . , 10}. As discussed previously and in [?], a given
set of thetas can describe a variety of different preferences to-
wards environmental or social information. Here we explore
the differences in behavior in a pro-social society (θ = .1)
and a pro-ecological society (θ = 10). The underlying
graph was taken to be either a directed cycle graph (1-
regular graph) or a complete graph (9-regular graph), which
are both optimal solutions to Problem 1 by Theorem 1.
The remaining parameters were taken to be bi = 1,∀i,
randomly selected starting conditions and thresholds ρ =
[0.244 0.929 0.350 0.197 0.251 0.616 0.473 0.352 0.831 0.585].

Figure 2 shows the resource level behavior for both the
Pro-Ecological and Pro-Social communities. The underlying
graph structure does not affect the resource consumption
in both the Pro-Ecological (2a) and Pro-Social case (2b).
The Pro-Social society has a much slower response time, as
information about the consumption of network neighbors is
prioritized. At the individual consumption level however the
underlying graph structure has a large impact. For both the
Pro-Social and Pro-Ecological societies the directed cycle
graph produces significant fluctuations as information about
consumption behavior takes much longer to flow through
the network. These simulations suggest that the full edge
budget should be used to facilitate communication. Future
work is required to characterize an agent based notion of



sustainability which fully captures the differences between
pro-social and pro-ecological behavior on these graphs.

VII. CONCLUSION

This paper considered designing the underlying social
network of a population to ensure sustainability The prob-
lem was formalized and analytical results were shown in
the case of a population that is homogeneous w.r.t the
preference of the agents to social information relative to
ecological information. Numerical results showed that even
in heterogeneous populations, homogeneity in the social
network was beneficial for sustainability. In the literature,
opinions on the effect of heterogeneity on successful resource
management are highly variable [?], [?]. Indeed past work on
the same model [?] showed that heterogeneity in the agent’s
social relevance decreases Tragicness (a notion related to the
distance between the tragedy of the commons and the current
state of the community). However the results included in this
paper suggest that heterogeneity in social relevance decreases
the time horizon over which the system is sustainable. While
our study does not provide a straight-forward verdict on
the role of heterogeneity, it does indicate that heterogeneity
needs to be exposed to a more thorough classification to
correctly establish its correlation with successful resource
management.


