
1
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Abstract—In this paper, we examine both stability and sustain-
ability of a network-based model of natural resource consump-
tion. Stability is studied from a dynamical systems perspective,
though we argue that sustainability is a fundamentally different
notion from stability in social- ecological systems. Accordingly,
we also present a criterion for sustainability that is guided by
the existing literature on sustainable development. Assuming a
generic social network of consuming agents’ interactions, we
derive sufficient conditions for both the stability and sustainability
of the model as constraints on the network structure itself. We
complement these analytical results with numerical simulations
and discuss the implications of our findings for policy-making for
sustainable resource governance.

1 INTRODUCTION

Sustainability of social-ecological systems has been
a subject of considerable interest for some time [1].
However, despite its importance, sustainability of this
kind is still far from being adequately defined in a rig-
orous context. The confusion stems directly from the
definition of sustainable development itself, given by
the Brundtland Commision of the World Commission
on Environment and Development (WCED) [2], which
leaves much room for interpretation. This has led to a
string of research spanning across multiple disciplines
in search of a formal definition of the concept [3], [4],
[5].

From a dynamical systems perspective, sustain-
ability has often been linked to developments in [6],
[7], and sometimes even used interchangeably with
stability in social-ecological systems [8]. We argue that
while stability is indeed relevant in this setting, it is
a purely dynamical systems property that does not

?Department of Mechanical and Aerospace Engineering, University of
Florida, Gainesville, FL, USA. Email: matthewhale@ufl.edu.
†Center for Complex Network Research and Department of Psy-
chology, Northeastern University, Boston, MA, USA. Email:
sebastianfruf@gmail.com.
‡Department of Electrical Engineering, Namal College, Mianwali,
Pakistan. Email: talha@namal.edu.pk.
§Department of Electrical Engineering, Lahore University of Manage-
ment Science, Lahore, Pakistan. Email: abubakr@lums.edu.pk.

appropriately account for the ecological nature of the
system. Thus a separate formulation of sustainability
is needed. This need is underscored by the rising
interest of the controls community not only in social-
ecological systems, but also in other systems lying at
the interface of technological, ecological, and social
sciences. Such systems are collectively termed “cyber-
physical social systems” [9].

In this paper we study the stability and sustain-
ability of a social-ecological system whose model was
first presented and studied in [10]. The model is for a
natural resource being harvested by a fixed number of
consuming agents. While deciding their consumption,
the agents not only take information about the re-
source into account, but also incorporate information
about the consumption of other neighboring agents.
The social network of the population thus plays a
critical role in determining overall system behavior,
and it must also affect sustainability in any sense
that is considered. Indeed, it has been found [1] that
the ability of a population to sustainably manage its
resources at the community level is highly dependent
on the underlying social network of that community.

Accordingly, the insights provided by the network
structure have resulted in an increase in the appli-
cation of network analysis tools to natural resource
systems [11], [12]. For instance, social structure has
been observed to be strongly correlated with pro-
environmental behavior in social-ecological settings
[13]. Information about the structure of the network
has also been exploited in the past to identify elements
critical to sustainable governance of a resource (for
some representative studies, see [14], [15], [16]). Pre-
viously, our selected model of resource consumption
has been studied only under restrictive assumptions
on the network topology [17].

In this paper, we maintain a generic network
structure to fully understand the effects of the social
network on sustainability of its resource. A complete
characterization of sustainable communities remains
an open problem for the scientific community. This has
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been attributed in part to the highly inter-disciplinary
nature of the field and a lack of integrative studies to
unify the research that remains scattered among dif-
ferent strands of work [18]. In this paper we devise a
criterion for sustainability that is subsequently applied
to our network model of resource consumption. This
results in structural conditions on the network topol-
ogy which, we believe, contributes a step towards
uncovering the structural characteristics of sustainable
societies.

In what follows, we develop a sustainability cri-
terion that draws from the literature on sustainable
development. This criterion is based on a rigorous
definition of sustainability that we introduce, and we
show how the enforcement of system sustainability
is translated into conditions on the network topology
and its associated parameters. We apply this criterion
to a network model of resource-consuming agents and
compare it with sufficient conditions for stability. To
that end, we also present a novel proof of stability for
the full n-agent model which was previously known
to be stable only for 2 agents [17]. The contributions
of this paper thus consist of the stability proof for the
general n-agent model and the sustainability criterion
we develop, together with the resulting analyses and
implications for resource consumption networks that
we discuss.

The remainder of the paper is organized as follows.
Section 2 first provides the model of interest. Then,
Section 3 presents sufficient conditions for stability
of the model and a Lyapunov-based stability proof.
Section 4 next provides a commentary on the sustain-
ability literature originating from different disciplines.
Following guidelines from this exposition, we also
present our mathematical definition of sustainability.
In Section 5, we obtain sufficient conditions for sys-
tem sustainability in the form of constraints on the
structure of its underlying social network. Section 6
presents simulations of both stable and sustainable
networks along with a discussion on the implications
for policy making. We conclude in Section 7.

2 BACKGROUND AND NETWORK MODEL
This section describes the system model of interest and
its coupled resource and consumption dynamics. The
model was first presented in [10] and subsequently
studied in [17], [19], [20], [21]. For full details on the
environmental and social-psychological foundations
of the model, we refer the reader to the sources men-
tioned above. Here we present a non-dimensionalized
version of the model (also introduced in [10]) that not
only has a reduced parameter space, but also allows
more straightforward interpretations of the results
relative to the original model.

The setting is that of a single natural resource
whose stock renews according to the standard model

of logistic growth [22]. The resource has an associated
carrying capacity and intrinsic growth rate that affect
the evolution of its value over time. Let x(t) > 0
represent the resource quantity at time t relative to its
carrying capacity. Thus x(t) = 1 implies that at time
t the resource stock is at its environmental carrying
capacity. The resource is harvested by a consuming
population consisting of n agents. Each agent harvests
the resource by exerting some effort, and, in this
model, this effort constitutes all the different dimen-
sions of harvesting activity. In fishing for instance,
it can capture the number of boats deployed, their
efficiency, the number of days fishing is undertaken,
etc. [22]

Let yi(t) 2 R represent the consumption effort of
agent i relative to the rate of growth of the resource; a
consumption effort of yi(t) = 1 implies a consumption
rate that is equal to the intrinsic growth rate of the
resource. The resource dynamics are then given by

ẋ(t) = (1� x(t))x(t)� x(t)
nX

i=1

yi(t),

where i 2 {1, . . . , n} indexes the agents in the net-
work. Note that the model permits a negative con-
sumption rate. From the dynamics of the resource
it is evident that this may result in x(t) taking on
values greater than unity, which corresponds to the
stock level crossing the natural carrying capacity of the
environment. In [10] we discuss the physical interpre-
tations of this phenomenon in detail. While a positive
consumption rate represents an effort to consume the
resource (thereby decreasing its stock), a negative rate
corresponds to an action to increase the stock of the
resource. This includes actions that directly increase
the stock (such as planting trees or breeding fish) as
well as more indirect actions (such as restoration of
soil fertility or a favorable distribution of gear to local
fishermen). These actions may also be directed to-
wards artificially increasing the carrying capacity, e.g.,
de-silting water canals, increasing the land available
for forest growth, shifting to more intensive farming
techniques, etc.

Next we present the dynamics of the individual
consumption efforts yi(t). According to Festinger’s
theory of social comparison processes [23], while mak-
ing decisions, humans incorporate both objective in-
formation and social information. In the context of re-
source consumption [24], the objective information is
interpreted as information on the state of the resource,
i.e., whether it is abundant or scarce. We model this
through the scarcity threshold ⇢i > 0 associated with
agent i. The state of the resource is then captured
by the ecological factor (x(t) � ⇢i(t)). A negative
ecological factor indicates that agent i perceives the
resource as scarce, whereas a positive factor indicates
that agent i perceives the resource to be abundant. The
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social information is interpreted as the difference be-
tween agent i’s consumption level and the consump-
tion levels of other neighboring agents. This is rep-
resented by the social factor

Pn
j=1 !ij (yj(t)� yi(t)),

where !ij > 0 is the directed tie-strength between
agents i and j and represents the influence that agent j
has on agent i’s consumption. Furthermore !ii = 0
and

PN
j=1 !ij = 1 for all i.

The rate of change of consumption effort is then
represented as a weighted sum of the ecological and
social factors. These are weighed by the ecological
and social weights ↵i 2 [0, 1] and ⌫i 2 [0, 1], respec-
tively (these terms are also referred to as the social
and ecological relevances of agent i below). Since the
weighing of both factors in the final decision-making
is observed to be one-dimensional [23], the weights
sum to one, i.e., ↵i + ⌫i = 1 for all i. Thus the
consumption dynamics are given by

ẏi(t) = bi
⇣
↵i(x(t)�⇢i)�⌫i

nX

j=1

!ij (yi(t)� yj(t))
⌘
,

where bi > 0 is called the sensitivity of agent i
and represents the readiness of agent i to change her
consumption.

Based on the above, the coupled dynamics of the
resource stock and consumption effort are

ẋ(t) = (1� x(t))x(t)� x(t)
nX

i=1

yi(t), (1)

ẏi(t) = bi
⇣
↵i(x(t)� ⇢i)� ⌫i

nX

j=1

!ij (yi(t)� yj(t))
⌘
,

where i 2 {1, . . . , n}. In Equation (1), t is non-
dimensional time which is normalized with respect to
the resource growth rate. In [10], we have discussed
how this normalization reduces the dimension of the
parameter space relative to the original model, along
with interpretations of the various variables and their
domains, and we refer the reader to that reference for
an extended discussion of the subject.

3 STABILITY OF NETWORKED RESOURCE
CONSUMPTION

This section proves that the network consumption
model in Section 2 is asymptotically stable. We first
rewrite the dynamics as an equivalent aggregate-level
resource and consumption system and then transform
this system into one whose equilibrium is at the origin.
Then we provide a Lyapunov-based stability proof.
Below, we use diag(a1, . . . , an) to denote the diagonal
matrix with the scalars a1 through an on its main
diagonal.

3.1 Aggregate Network Dynamics
We define the states � = lnx and y = (y1, . . . , yn)T

along with the matrices A = diag(↵1, . . . ,↵n),
B = diag(b1, . . . , bn), and V = diag(⌫1, . . . , ⌫n). We
further define the vector ⇢ = (⇢1, . . . , ⇢n)T and the
matrix of weights

T =

0

BBB@

1 �!12 �!13 · · · �!1n

�!21 1 �!23 · · · �!2n
...

...
...

. . .
...

�!n1 �!n2 �!n3 · · · 1

1

CCCA .

We further define ✓i =
⌫i
↵i

, which we will use below.
Differentiating � and y with respect to time gives

�̇ =
ẋ

x
= 1� x� T y

ẏ = BA(e� � ⇢)�BV Ty.

In this form, we impose the following assumptions.
Assumption 1. The matrix (A T + V T )�1 exists and

T �A T + V T
��1

A( � ⇢) < 1. 4

Below, Assumption 1 will be used to insure that �0
and y0, the respective equilibria of the � and y dy-
namics, are well-defined.
Assumption 2. The underlying graph connecting

agents is strongly connected. 4
Assumption 2 is a common assumption in multi-agent
networks. Strong connectivity implies, roughly, that
there is “enough” interaction among agents to drive
the state of the system toward its equilibrium point,
and this notion will be made precise in Theorem 1.
Assumption 3. For all agent indices i 2 {1, . . . , n},

✓i �
nX

k=1
k 6=i

!ki✓k. 4

Because ✓i = ⌫i
↵i

, we can regard ✓i as measure of
how social agent i is. Assumption 3 then requires that
agent i’s outgoing influence, measured upon agent k
through !ki, be limited based on its own sociability. To
influence other highly social agents, agent i must itself
be more social. Conversely, if agent i is less social, then
it will have a smaller value of ✓i, and the weights of
its outgoing edges must be smaller.

Computing the equilibrium of these dynamics, we
set �̇ = 0, which gives �0 = ln(1 � T y0). To find
y0, we have ẏ = 0 = B(A e�0 � A⇢ � V Ty0) where
solving for y0 gives y0 = (A T + V T )�1A( � ⇢),
which is well-defined under Assumption 1.

To shift this system’s equilibrium to the origin, we
then define the states v = � � �0 and w = y � y0.
Computing v̇ and ẇ, we find

v̇ = �e�0(ev � 1)� Tw (2a)
ẇ = e�0BA (ev � 1)�BV Tw.
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3.2 Global Asymptotic Stability
The following theorem shows that the system model
in Equation (2) is globally asymptotically stable. Due
to its technical nature, we relegate the proof to the
appendix.
Theorem 1. The system in Equation (2) is globally

asymptotically stable to the origin.

Proof: See the Appendix. ⌅
While stability is of course critical to insuring ac-

ceptable asymptotic network behaviors, stability as a
purely dynamical systems notion does not account for
the fact that this is a resource consumption network.
The value of the resource itself must be sustained
over time, and thus its dynamics and those of the
agents’ consumptions must be accounted for not only
in the limit, but also at each point in time as the
system evolves. Accordingly, we next assess the role
of sustainability in this system.

4 FORMALIZING SUSTAINABILITY

In the quest for attaining sustainable societies, one
of the biggest challenges is formalizing a notion of
sustainability. The Brundtland Commission of the
WCED [2] defines sustainable development as “devel-
opment that meets the needs of the present without
compromising the ability of future generations to meet
their own needs”. Clearly, this definition leaves much
room for interpretation, and a vast amount of litera-
ture is devoted to developing a definitive measure of
sustainability. As a result, there exist varying notions
of sustainability originating from different disciplines
ranging from the ecological sciences [3] to economics
[25]. These discrepancies create significant difficulty
in characterizing sustainable behavior in the rigorous
framework of dynamical systems.

It is quite natural to think of sustainable con-
sumption in social-ecological systems as a state in
which the level of consumption is allowed to be
non-decreasing [26]. On the other hand, it is broadly
understood that a continuously increasing consump-
tion is not realizable in a finite world with limited
resources [27]. Sustainability would then imply an
indefinitely maintainable level of consumption, which
corresponds to attaining a positive equilibrium. It is
not surprising therefore, that stability has been closely
linked with sustainability by researchers working in
the area (see for instance [6], [7], [8]).

However, while stability is roughly understood
to be a necessary property for sustainability, it is
not sufficient [7]. In particular, from an economical
viewpoint, Chichilnisky [4] argues that sustainability
should not only rely on the behavior of the consump-
tion path in the limit (as time approaches infinity), but
also on the accumulated utility for all time. From an

ecological perspective, an ecosystem can remain func-
tional only if its critical parameters remain within a
certain region over time [28], which likewise suggests
the use of some non-asymptotic analysis.

Martinet formalizes this phenomenon in his defi-
nition for sustainability as bounds on certain sustain-
ability indicators [5]. He then defines a sustainability
criterion as a generalized maximin problem in search
of the bounds that are optimal with respect to certain
preference functions. The boundedness of system re-
sponse is captured by the concept of Lagrange stability
in dynamical systems theory [29]. Lagrange stability
has also been related in the ecological literature with
the ability of an ecosystem to resist disturbances [7].
However Lagrange stability (along with other classical
notions of stability [30]) is an absolute property of
the system rather than its trajectories. This poses a
challenge in prioritizing different trajectories based on
their level of sustainability. In other words, stability
alone does not capture the nuances of sustainability.

Beyond stability, another property of the system
that is closely linked with sustainability is resilience.
Holling [31] defines resilience as the ability of a system
to maintain its integrity when subjected to distur-
bances. From a dynamical systems viewpoint, this
property can be related to how rapidly or gradually
a system moves towards an equilibrium. For social-
ecological systems, a sudden change in consumption
patterns may trigger a major regime change in the un-
derlying habitat accommodating the natural resource,
which in turn may cause unpredictable and undesir-
able changes in the resource stock itself. Thus, a con-
sumption path must not vary at more than a certain
rate for it to be sustainable. The notion of sustainabil-
ity as permitting a non-decreasing consumption path
already implies a lower bound on the derivative of the
consumption trajectory [32]. However the above argu-
ment also implies an upper bound on the derivative.
It is important to note that while a limit on the rate
of change of the trajectories protects the system from
loss of resilience, it also further reflects the physical
limits associated with the rate of resource growth and
harvesting.

Even across the different notions of sustainability
present in the literature, e.g., [26], [32], [33], [34], the
underlying philosophy remains the same: sustainabil-
ity entails preserving essential system characteristics
over a sufficiently long period of time. What distin-
guishes these notions then, is the different perspec-
tives on what characteristics of the system must persist
and for how long. Costanza and Patten [7] assert
that sustainability is highly dependent on the scale
at which the system is perceived. In particular, the
sustainability of a larger system does not imply the
sustainability of all of its subsystems. For example,
cells and bacteria die periodically in order for a larger
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organism to sustain its life, or a small city may be
consumed by construction of a dam in order to pro-
mote the sustainability of the region as a whole. The
losses of these smaller subsystems prolong the sus-
tainability of the larger systems, though it is broadly
understood that this does not provide “maintenance
forever” of the larger system [35]. Sustainability thus
cannot imply an infinite lifetime. Rather, it implies
that the system achieves its expected lifespan, and
this lifespan depends both on the temporal and spatial
scales of the system of interest [35].

In light of the above discussion, it is possible to
identify the salient features that we can use to math-
ematically encode sustainability. These are listed in
sequence below:

• First, sustainability should be evaluated over
finite intervals. This reflects that sustainability
of a system does not necessarily mean indef-
inite survival, but rather the attainment of its
expected lifespan [7]. As discussed above, this
lifespan depends on the natural temporal and
spatial scales of a system.

• Second, sustainability should provide criteria
pointwise in time as opposed to only at the
steady-state behavior of a system. Sustainabil-
ity concerns itself not only with the generation
in the time limit, but also with the current
generation and all others in between [2]. Thus,
rather than being asymptotic, a definition of
sustainability should account for all states of
a system over time [4], [26].

• Third, sustainability should be a structural
property of a system [28]. From a systems
perspective, the structure of the system deter-
mines the characteristics that are essential to
attaining a particular state of being. In this
context, sustainability may be thought of as the
invariance of a particular quantity (mediated
by the internal structure) that captures the re-
quired behavior. The model in Section 2 is a
networked system, and the “structure” of this
system consists of both its topology and associ-
ated edge weights, which are encapsulated by
the matrix T .

Following the guidelines listed above, we develop a
mathematical formulation of sustainability as follows.
First, we consider sustainability for systems across the
time horizon [0, tmax] for some tmax > 0. Second, we
define the following four constants:

1) vmax, the maximum allowable value of v
2) vmin, the minimum allowable value of v
3) dmax, the maximum allowable value of v̇
4) dmin, the minimum allowable value of v̇,

where d is chosen to indicate “derivative”.

Together, the four constants listed above define a
box in the (v, v̇)-plane, and sustainability of a system
is equivalent to invariance of this box. We emphasize
that the equilibrium of v need not be in this box, which
further highlights the distinction between stability and
sustainability. The above criteria are motivated by
purely ecological concerns, though they naturally lead
us to consider forward invariance of a compact region
of the system’s state space. In particular, we define the
subset S of the (v, v̇)-plane as

S :=
��
v, v̇

�
| v � vmin, v  vmax, v̇ � dmin, v̇  dmax

 
,

and sustainability for a social-ecological system is then
defined as follows.
Definition 1. A quantity of resource v(t) is sustainable

over [0, tmax] if
�
v(t), v̇(t)

�
2S for all t2 [0, tmax].

4

Note that many of the above sustainability no-
tions from the existing literature pertain directly to
consumption, while our mathematical sustainability
criterion is stated in terms of the resource. Despite this
apparent difference, we show in Section 5 below that
Definition 1 must account for agents’ consumptions to
be satisfied. In particular, we show how Definition 1 is
linked with both the social structure and individual
parameters of the consuming network by deriving
conditions on T,A and B that are sufficient to satisfy
Definition 1.

5 INSURING SUSTAINABILITY OF NET-
WORKED RESOURCE CONSUMPTION

The social structure of a resource consumption net-
work is specified both by the graph of agents’ inter-
actions and the weights of edges in this graph. These
values are captured in the matrix T in Equation (2),
and this section will derive conditions on T that insure
that v remains at sustainable levels over some pre-
specified time horizon [0, tmax]. These results require
not only accounting for how v evolves, but also how
agents’ consumption levels affect v.

5.1 Preliminaries
Towards deriving the desired conditions on T , we first
give some preliminary results related to v and w that
we will use below. We begin by stating the Bellman-
Grönwall inequality in the required form.
Lemma 1. Bellman-Grönwall Inequality; [36]) Let K1 2 R

and K2 > 0. If, for all t 2 [a, b], � : [a, b] ! R, the
bound �(t)  K1 +K2

R t
a �(s) ds is satisfied, then

on the same interval �(t)  K1eK2(t�a). ⌅
Next, we enforce the following assumption.

Assumption 4. We assume that
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• vmin < vmax

• vmax > 0
• vmin < v(0) < vmax

• dmin < 0 < dmax. ⌃

This assumption is rather mild in what it imposes
upon the system. Requiring that vmax > 0 and vmax >
vmin insures that a given set of sustainability bounds
is feasible. Assuming that vmin < v(0) < vmax merely
assumes that a system starts within the bounds it must
remain within. And requiring that dmin < 0 < dmax

means that the resource levels in a system should
be allowed to both increase and decrease, which is
natural.

Next, we define the constants � =
maxi2{1,...,n} bi⌫i, C1 = kw(0)k1 + tmaxe�0(evmax �
1)
Pn

i=1 bi↵i, and C2 = �kTk1tmax, and we will
repeatedly encounter them below. Using Lemma 1 and
Assumption 4, we have the following characterization
of w.
Lemma 2. Suppose that v(s)  vmax for all s 2 [0, t).

Then kw(t)k1  C1 exp(C2).

Proof: The fundamental theorem of calculus gives

w(t) = w(0) +
Z t

0
e�0BA (ev � 1)�BV Tw(⌧)d⌧.

Taking the 1-norm of both sides and applying the
triangle inequality then gives

kw(t)k1  kw(0)k1 +
Z t

0
ke�0BA (ev(⌧) � 1)k1d⌧

+
Z t

0
kBV k1kTk1kw(⌧)k1d⌧

 kw(0)k1 + tmaxe
�0kBA (evmax � 1)k1

+ kBV k1kTk1
Z t

0
kw(⌧)k1d⌧

= kw(0)k1 + tmaxe
�0(evmax � 1)

nX

i=1

bi↵i

+ kBV k1kTk1
Z t

0
kw(⌧)k1d⌧,

where we have used that v(⌧)  vmax and expanded
the 1-norm of BA .

Using that the 1-norm of a matrix is equal to its
largest column sum, the value of kBV k1 is then equal
to � because BV is diagonal. The lemma follows by
applying Lemma 1 with K1 = C1 and K2 = C2. ⌅

We next derive a similar bound for v.
Lemma 3. Suppose that v(s)  vmax for all s 2 [0, t).

Under the dynamics in Equation (2), we find that

v(t) � v(0)�tmax

⇥
e�0(evmax�1)�C1 exp(C2)

⇤
.

Proof: From the fundamental theorem of calculus,

v(t) = v(0)�
Z t

0
e�0(ev(s) � 1)ds�

Z t

0

Tw(s)ds.

Noting that ev(⌧) � 1  evmax � 1, we find

v(t) � v(0)� te�0(evmax � 1)�
Z t

0

Tw(⌧)d⌧.

For the final term above we find that
Z t

0

Tw(⌧)d⌧ 
Z t

0
kw(⌧)k1d⌧.

Multiplying by �1 to reverse the inequality, we find

v(t) � v(0)� te�0(evmax � 1)�
Z t

0
kw(⌧)k1d⌧.

We complete the proof by applying Lemma 2. ⌅
Having established these basic preliminary lem-

mas, we next derive bounds on T to enforce the
sustainability bounds on v and v̇.

5.2 Enforcing v(t)  vmax

To enforce v(t)  vmax, we enforce v̇
��
v=vmax

 0, and
the following lemma gives a sufficient condition for
doing so.

Lemma 4. Under Assumption 4, if T satisfies

kTk1  1

�tmax
ln

✓
e�0(evmax � 1)

C1

◆

then v(t)  vmax for all t 2 [0, tmax].

Proof: Using Equation (2a), enforcing v̇
���
v=vmax

 0 is

equivalent to requiring �e�0(evmax � 1) � Tw  0,
which we rearrange to find � Tw  e�0(evmax � 1).

We note that � Tw  kwk1, and we will thus
enforce the sufficient condition

kw(t)k1  e�0(evmax � 1) (3)

for all t. Using Assumption 4, v(0) < vmax. Suppose
that v approaches vmax at time t, i.e., v(t) = vmax.
Then the condition v(s)  vmax for all s 2 [0, t) is
satisfied and Lemma 2 can be used at time t. Then a
sufficient condition for enforcing Equation (3) is given
by

C1 exp(�kTk1tmax)  e�0(evmax � 1).

Solving for kTk1 then gives a bound that in-
sures v̇(t)

��
v=vmax

 0. If v later approaches vmax at
some time ⌧ , then repeating the above argument at ⌧
insures that v̇(⌧)

��
v=vmax

 0 as well. Of course, if v
never approaches vmax then v(t)  vmax trivially
holds, and thus it is true for all t 2 [0, tmax] in all
cases. ⌅
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5.3 Enforcing v(t) � vmin

We next derive a sufficient condition on T that implies
that the bound v(t) � vmin is satisfied for all t 2
[0, tmax].

Lemma 5. If kTk1 satisfies the bound in Lemma 4 and

kTk1  1

�tmax
ln

✓
v(0)� tmaxe�0(evmax � 1)� vmin

tmaxC1

◆
,

then v(t) � vmin for all t 2 [0, tmax].

Proof: The bound from Lemma 4 insures that v(t) 
vmax for all t 2 [0, tmax] and thus Lemma 3 can be
applied. Using Lemma 3, a sufficient condition for this
lemma is to enforce

v(0)�tmaxe
�0(evmax�1)�tmaxC1 exp (C2) � vmin.

Rearranging terms and expanding C2 we find

v(0)� tmaxe
�0(evmax � 1)� vmin

� tmaxC1 exp (�kTk1tmax) ,

where solving for kTk1 completes the proof. ⌅
With Assumption 4 in place, Lemmas 4 and 5

jointly provide that v(t) 2
⇥
vmin, vmax

⇤
for all t 2

[0, tmax], and the next two lemmas rely on this point.

5.4 Enforcing v̇  dmax

In this section we derive a condition on kTk1 that
implies v̇(t)  dmax for all t 2 [0, tmax].

Lemma 6. Suppose that kTk1 satisfies the bound in
Lemma 4. If kTk1 also satisfies

kTk1  1

�tmax
ln

✓
dmax + e�0(evmin � 1)

C1

◆

then v̇(t)  dmax for all t 2 [0, tmax].

Proof: Similar to above, we use that

v̇ = �e�0(ev�1)� Tw  �e�0(evmin�1)+kw(t)k1

to derive a sufficient condition. In particular, be-
cause T satisfies the bound in Lemma 4 we may apply
Lemma 2. Doing so, we wish to enforce

�e�0(evmin � 1) + C1 exp (C2)  dmax.

Rearranging we find

C1 exp (�kTk1tmax)  dmax + e�0(evmin � 1),

where isolating kTk1 completes the proof. ⌅

5.5 Enforcing v̇ � dmin

This section derives a sufficient condition on kTk1 that
implies v̇ � dmin for all t 2 [0, tmax].
Lemma 7. Suppose that T obeys the bound in

Lemma 4. If kTk1 also obeys the bound

kTk1  1

�tmax
ln

✓ |dmin|� e�0(evmax � 1)

C1

◆
,

then v̇(t) � dmin for all t 2 [0, tmax].

Proof: Using Equation (2a), a sufficient condition for
v̇(t) � dmin is dmin  �e�0(ev � 1)� Tw. Rearrang-
ing, we wish to enforce e�0(ev � 1) + Tw  |dmin|,
where the absolute value comes from the fact that
dmin < 0 in Assumption 4. A sufficient condition
for doing so is e�0(ev � 1) + kw(t)k1  |dmin|. By
hypothesis, T satisfies the bound in Lemma 4 and, as
as result, v(t)  vmax for all t 2 [0, tmax]. Then we
apply Lemma 2 to find the bound

e�0(evmax � 1) + C1 exp (�kTk1tmax)  |dmin|.

Solving for kTk1 then gives the result. ⌅

5.6 Overall Sustainability Bound
Enforcing sustainability requires that v(t) 2
[vmin, vmax] and that v̇(t) 2 [dmin, dmax] for all t 2
[0, tmax]. Insuring satisfaction of these conditions can
be done by satisfying all four of the preceding bounds
on kTk1. Combining the four preceding lemmas, we
have the following theorem that states a single unified
sustainability criterion.
Theorem 2. Suppose that Assumption 4 holds and

define the constants

⇠1 = e�0(evmax � 1)

⇠2 =
v(0)� tmaxe�0(evmax � 1)� vmin

tmax

⇠3 = dmax + e�0(evmin � 1)

⇠4 = �dmin � e�0(evmax � 1).

If, for all i 2 {1, 2, 3, 4}, ⇠i > C1, then the system
in Equation (2) is sustainable for any T satisfying

kTk1  1

�tmax
ln

0

@
min

i2{1,2,3,4}
⇠i

C1

1

A . (4)

⌅
The condition that ⇠i > C1 is simply a feasibility

condition; if it is violated, then these bounds cannot
be used to insure sustainability because the logarithm
will output a negative value. This feasibility condition
can be used to generate conditions that must be sat-
isfied by the parameters vmin, vmax, dmin, dmax, and
tmax; we avoid a lengthy exposition on this subject
because the many parameters in this model generate a
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vast number of possible relationships that one could
explore. Instead, we comment on one relationship
in particular. Elementary operations show that the
condition ⇠1 > C1 implies that 1Pn

i=1 bi↵i
> tmax. This

relationship points to the importance of agent sensitiv-
ity, captured by bi, when ensuring sustainability. We
expand on the relationship between sustainability and
sensitivity in the next section, and we further discuss
the implications of sustainability in that context.

6 SIMULATION AND DISCUSSION

In this section we explore the implications of the above
results for the behavior of social-ecological systems.
First, the behavior of the model is examined under
different ✓ parameters in order to demonstrate the
differences between societies that place more weight
on social information and societies that place more
weight on ecological information; these cases will
be referred to as pro-social and pro-ecological societies,
respectively. We will benchmark these cases against
societies which weight social and ecological informa-
tion comparably, which we refer to as the equal case.
Second, the sustainability bounds are discussed with
respect to the parameter bi, demonstrating how the
sensitivity of populations relates to the sustainability
of their consumptions.

6.1 Pro-Social and Pro-Ecological Communities
The stability proof presented in Theorem 1 depends
on Assumption 3, i.e., that ✓i �

Pn
k=1
k 6=i

!ki✓k for all i.

If the collection {✓i}i2{1,...,n} satisfies Assumption 3,
then {�✓i}i2{1,...,n} for � � 0 also does. While the
relationship between the individual ✓i’s is fixed by
Assumption 3, the scaling factor � allows a variety of
systems to be described based on a single collection
{✓i}i2{1,...,n} that satisfies Assumption 3. With such a
collection, and using ✓i =

⌫i
↵i

and ⌫i + ↵i = 1, we set

↵i =
1

1 + �✓i
and ⌫i =

�✓i
1 + �✓i

to find new sets of admissible parameters. If � is
chosen so that �✓i � 1, then ↵i ⇡ 0 and ⌫i ⇡ 1,
which we refer to as the pro-social condition. If �✓i ⌧ 1,
then ⌫i ⇡ 0 and ↵i ⇡ 1, which we refer to as the pro-
ecological condition. We refer to the case of ↵i ⇡ ⌫i as
the equal condition.

To understand the impact of the relative sizes
of ↵i and ⌫i on system behavior, the system in
Equation (2) was simulated on the 25-node ran-
domly generated graph shown in Figure 1. Each
edge was given uniform weight. The choice of ✓ =
[0.1826 0.3296 0.2313 0.3454 0.1987 0.1923 0.1642
0.1989 0.1182 0.2198 0.1124 0.0734 0.1592 0.3608
0.1913 0.1810 0.2098 0.1206 0.3210 0.0606 0.0597

Fig. 1. The 25-node, 114-edge random graph used for simulation
visualized with Gephi [37]. Each node in this graph represents an
agent and each edge represents that two agents interact.

0 10 20 30 40

t

-2

-1.5

-1

-0.5

0

0.5

v(
t)

Pro-Ecological
Pro-Social
Equal

Fig. 2. The behavior of the resource stock v(t) for the pro-
ecological, pro-social, and equal cases when simulated on the
network in Figure 1. The pro-ecological and equal cases show
similar oscillatory behaviors while the pro-social cases shows
lower-frequency oscillations of substantially larger magnitude.

0.1302 0.0808 0.1336 0.1638]T insures satisfaction
of Assumption 3. Three cases were run to elucidate
the impacts of varying ↵i and ⌫i. In terms of their
respective averages, ↵̄ and ⌫̄, these cases are:

i. The pro-ecological case with � = 0.1, which gives
↵̄ = 0.9822 and ⌫̄ = 0.0196

ii. The pro-social case with � = 10, which gives
↵̄ = 0.0644 and ⌫̄ = 0.9356

iii. The equal case with � = ✓̄ = 0.1816, which gives
↵̄ = 0.5261 and ⌫̄ = 0.4739.

The parameters bi and ⇢i were chosen uniformly at
random from [0, 1].

The resource behavior for all three runs is shown
in Figure 2 and the individual consumption behavior
for all three runs is shown in Figure 3; each plot is
representative of the behavior observed on a variety of
graph topologies over the course of many simulations.
We see that both the resource stock and consumption
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Fig. 3. The individual consumptions, wi(t), i 2 {1, . . . , 25}, for the aforementioned 25-node graph under the pro-social, pro-ecological,
and equal conditions. It takes approximately 2000 time steps for the pro-ecological network to converge, compared with 100 and 50
time steps for the equal and pro-social networks, respectively.

values tend to fluctuate to varying degrees, depicted
by the oscillations in these trajectories. Such oscilla-
tions may be undesirable in social-ecological systems
for a variety of reasons. For instance, it has been ob-
served that grasslands and forests exhibit an increased
tendency to be eradicated by invading plant species
in the presence of frequent disturbances and repeated
exposure to extreme environmental conditions [38],
[39]. In addition, boom-bust cycles in human-natural
systems may not only lead to undesirable develop-
ment patterns in the linked communities [40], but also
unwanted price fluctuations by means of substantial
supply shocks [41].

Among the three shown simulation runs, Figure 2
shows that the pro-social system exhibits relatively
fewer total oscillations than the other systems, though
the magnitude of oscillations is larger. Note that in
Figure 2, while the resource dynamics for the pro-
ecological and equal societies display significantly
more fluctuations than the pro-social society, they
converge to the equilibrium faster. The notion of speed
of convergence, and of return to the equilibrium,
have been previously associated with the concept
of resilience, a fundamental attribute of sustainable
systems [7], [42]. We then see from Figure 2 that
while the pro-social resource dynamics have desirably
fewer fluctuations, the pro-ecological dynamics have
a desirably higher rate of convergence with smaller
magnitudes of oscillations. The situation is reversed if
we observe the trajectories of the individual consump-
tions in Figure 3. Here, the pro-ecological society ex-
hibits fewer oscillations but with slower convergence,
while the pro-social society exhibits faster convergence
but with more oscillations.

There thus exist two trade-offs. The first is between
fluctuations and rate of convergence, with faster con-
vergence coming at the cost of more fluctuations in the
resource, and reduced fluctuations coming at the cost
of slower convergence to an equilibrium value. The
second tradeoff is between desirable behaviors in the
resource and desirable behaviors in agents’ consump-

tion levels, with reduced fluctuations in each coming
at the cost of increased fluctuations in the other. These
tradeoffs suggest that the equal society, which gives
a balanced preference to both ecological and social
information, is more favorable than extreme societal
configurations that weigh one source of information
much more heavily than the other. From a policy
perspective, promoting the equal society would entail
measures that encourage society to give equal consid-
eration to the state of the resource and the behavior
of neighboring agents while determining individual
consumptions. Examples of such measures include
strategic information dispersion, targeted advertising,
awareness campaigns, and manipulating visibility of
key variables [43].

6.2 System Sensitivity

The conditions required by Theorem 1 did not restrict
the parameters {bi}i2{1,...,n}, which factors out of the
consumption dynamics for ẇ and thus essentially acts
as a gain on agents’ responsiveness to network stimuli.
That is, the parameter bi captures agent i’s sensitivity
to the social and ecological information they receive.
However, the sustainability bounds derived in Sec-
tion 4 depend upon {bi}i2{1,...,n} through the param-
eter � and the term

Pn
i=1 bi↵i in the definition of C1.

Furthermore, as discussed previously, for ⇠1 > C1 it
must hold that 1Pn

i=1 bi↵i
> tmax, implying that agents’

sensitivities affect bounds on the time horizon over
which sustainability can be guaranteed.

We consider the implications of this bound in the
same 25-node network shown in Figure 1 under the
equal parameter regime. We consider three uniform
cases: bi = 0.025, bi = 0.005, or bi = 0.001 for all i,
and changing bi changes the time horizon over which
a system can be shown to be sustainable. We consider
a time horizon of tmax = 1 when bi = 0.025, a time
horizon of tmax = 2 when bi = 0.005, and a time
horizon of tmax = 3 when bi = 0.001. Note that
these times are normalized with respect to the intrinsic
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growth rate of the resource, and thus sustainability
for tmax = 3 pertains to the system behavior across
an interval that is 3 times the intrinsic time constant of
the resource [22].

The bounds in Equation (4) determine sustain-
ability with respect to choices of vmin, vmax, dmin,
and dmax, which would be determined by the ecolog-
ical context that is being modeled. For this simulation,
we consider the minimal vmax and dmax as well as the
maximal vmin and dmin for which the system is sus-
tainable, which we refer to as the minimal sustainability
window. These values can be derived from elementary
operations on the condition that ⇠i = ekTk1�tmaxC1 for
i 2 {1, 2, 3, 4}, which follows from attaining equality
in the bound in Theorem 2. We plot the evolution of
the resource from t = 0 to t = tmax in Figure 4, where
we see that that it indeed remains within the minimal
sustainability window. In Figure 4, as bi decreases the
minimal sustainability window more tightly bounds
the resource trajectory, suggesting that the resulting
system is sustainable with respect to a larger set
of choices of vmin, vmax, dmin, and dmax. This also
suggests that a decrease in agent sensitivity results
in longer time horizons for which the system can be
made sustainable.

However, sensitive systems have been observed
to be more beneficial in certain settings and with
respect to a particular set of indicators. For instance,
Consumer Affect (intensity of reaction to stimuli [44])
has been found to have a profound effect on achiev-
ing sustainable consumer behavior [43]. The ability
of agents to adapt quickly to resource fluctuations
has also been found to be an important aspect of
sustainable fishing communities [45]. We find in our
model that low sensitivity can indeed be associated
with higher fluctuations in the resource.

However, as highlighted in the preceding sections,
social-ecological systems are complex in nature, where
a single factor alone cannot be associated with a
particular outcome. Instead, system parameters and
variables often act in combination to produce a cer-
tain outcome. To further illustrate this point, Figure 5
shows the resource trajectory for a relatively less-
sensitive society. The simulation was run for the same
25-node graph as above, with bi = 0.005 and for all
configurations of information preference used above.
The pro-social society has a very large fluctuation
in the quantity of the resource, reaching1 v ⇡ �30,
which is roughly 6 times the size of fluctuations in
the equal society and nearly 10 times that of the pro-
ecological one. This suggests that insufficient weight-
ing of ecological information and low sensitivity, to-
gether, lead to large, potentially harmful fluctuations

1. The negative value here is due to the logarithmic coordinate
transformation to arrive at the system in (v, w)-coordinates.
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-4
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Fig. 4. The resource, v(t), versus v̇(t) from t = 0 to t = tmax

with bi = 0.025 for all i, bi = 0.005 for all i, and bi = 0.001 for all i
on the network in Figure 1 with ↵i = ⌫i for all i. The red, blue, and
black boxes are the minimal sustainability window for bi = 0.025,
bi = 0.005, and bi = 0.001, respectively. As bi decreases, the
trajectory elongates, reflecting both a larger tmax and the fact
that the minimal sustainability window more tightly bounds the
trajectories.

in the resource. This point has been observed previ-
ously in [46], where more sensitivity to ecological in-
formation has been observed to contribute to adopting
more sustainable behavior patterns.

The above suggests another trade-off enacted by
varying the sensitivity of the agents. On one hand,
higher sensitivity leads to loose bounds and small
time horizons for the sustainability criterion. On the
other hand, low sensitivity leads to larger oscillations
in the resource stock (especially in combination with
low preference for ecological information). The model
hence suggests, from a policy perspective, controlled
measures to vary the responsiveness of the consuming
population. These measures may either be of an infor-
mational or structural nature (see [43] and included
references for possible examples of such measures),
with the end goal always being improving sustain-
ability outcomes.

7 CONCLUSION

In this paper we have presented a mathematical cri-
terion for sustainability grounded in the literature
on sustainable development. The presented defini-
tion of sustainability extends the notion of stability
which is often applied to ecological systems. While
stability pertains to the asymptotic behavior of the
system, sustainability concerns itself with behavior
over a finite time horizon where transient behavior
often dominates. We find that, in the chosen model
of natural resource consumption, the requirements for
sustainability are not captured by stability alone. In
particular, we observe that agent sensitivity, while
having no contribution to determining stability, has a
major role in sustainability of the same system. Our
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Fig. 5. The behavior of the resource stock, v(t), for the 25-node
graph in Figure 1 under three parameter conditions on ↵ and
⌫ when bi = 0.005 for all i. Here the pro-social condition has
oscillations that are much larger than the other two cases.

simulations of sustainable networks for the model
uncover tradeoffs in system behavior that do not ap-
pear when investigating system stability alone. These
findings may be translated to guidelines for effective
policy-making in natural resource systems. This study
thus serves as one step towards a dynamical systems
theory for sustainability of social-ecological systems.
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[6] D. Ludwig, B. Walker, and C. S. Holling, “Sustainability,
stability, and resilience,” Conservation ecology, vol. 1, no. 1,
1997.

[7] B. C. Patten and R. Costanza, “Logical interrelations be-
tween four sustainability parameters: stability, continua-
tion, longevity, and health,” Ecosystem Health, vol. 3, no. 3,
pp. 136–142, 1997.

[8] A. Kinzig and C. Perrings, “Consumption, stability, and
sustainability in social-ecological systems,” in Sustainable
Consumption: Multi-disciplinary Perspectives In Honour of Pro-
fessor Sir Partha Dasgupta. Oxford University Press, 2014,
pp. 221–245.

[9] F.-Y. Wang, “The emergence of intelligent enterprises: From
cps to cpss,” IEEE Intelligent Systems, vol. 25, no. 4, pp. 85–
88, 2010.

[10] T. Manzoor, E. Rovenskaya, and A. Muhammad, “Game-
theoretic insights into the role of environmentalism and
social-ecological relevance: A cognitive model of resource
consumption,” Ecological modelling, vol. 340, pp. 74–85,
2016.

[11] C. Prell and Ö. Bodin, Social Networks and Natural Resource
Management: Uncovering the social fabric of environmental
governance. Cambridge University Press, 2011.

[12] J. Videras, “Social networks and the environment,” Annu.
Rev. Resour. Econ., vol. 5, no. 1, pp. 211–226, 2013.

[13] J. Videras, A. L. Owen, E. Conover, and S. Wu, “The influ-
ence of social relationships on pro-environment behaviors,”
Journal of Environmental Economics and Management, vol. 63,
no. 1, pp. 35–50, 2012.

[14] C. Prell, K. Hubacek, and M. Reed, “Stakeholder analysis
and social network analysis in natural resource manage-
ment,” Society and Natural Resources, vol. 22, no. 6, pp. 501–
518, 2009.

[15] J. A. Crowe, “In search of a happy medium: How the struc-
ture of interorganizational networks influence community
economic development strategies,” Social Networks, vol. 29,
no. 4, pp. 469–488, 2007.

[16] S. Ramirez-Sanchez and E. Pinkerton, “The impact of re-
source scarcity on bonding and bridging social capital: the
case of fishers information-sharing networks in loreto, bcs,
mexico,” Ecology and Society, vol. 14, no. 1, 2009.

[17] T. Manzoor, E. Rovenskaya, A. Davydov, and A. Muham-
mad, “Learning through fictitious play in a game-theoretic
model of natural resource consumption,” IEEE Control Sys-
tems Letters, vol. 2, no. 1, pp. 163–168, 2018.

[18] T. Rockenbauch and P. Sakdapolrak, “Social networks and
the resilience of rural communities in the global south:
a critical review and conceptual reflections,” Ecology and
Society, vol. 22, no. 1, 2017.

[19] T. Manzoor, E. Rovenskaya, and A. Muhammad, “Struc-
tural effects and aggregation in a social-network model of
natural resource consumption,” IFAC-PapersOnLine, vol. 50,
no. 1, pp. 7675–7680, 2017.

[20] S. F. Ruf, M. T. Hale, T. Manzoor, and A. Muhammad,
“@inproceedingsruf2018stability, author = Ruf, Sebastian F
and Hale, Matthew T and Manzoor, Talha and Muhammad,
Abubakr, title = Stability of leaderless resource consump-
tion networks, booktitle = Decision and Control, 2018 57th

IEEE Conference on, year = 2018, organization = IEEE, ,” in
Decision and Control, 2018 57th IEEE Conference on. IEEE,
2018.

[21] ——, “Design of sustainable resource consumption net-
works (to appear),” in Decision and Control, 2019 58th IEEE
Conference on. IEEE, 2019.

[22] R. Perman, Y. Ma, J. McGilvray, and M. Common, Natural
resource and environmental economics. Pearson Education,
2003.

[23] L. Festinger, “A theory of social comparison processes,”
Human relations, vol. 7, no. 2, pp. 117–140, 1954.

[24] H.-J. Mosler and W. M. Brucks, “Integrating commons
dilemma findings in a general dynamic model of cooper-
ative behavior in resource crises,” European Journal of Social
Psychology, vol. 33, no. 1, pp. 119–133, 2003.

[25] J. C. Pezzey and M. A. Toman, The Economics of Sustainabil-
ity. Routledge, 2017.

[26] S. Valente, “Sustainable development, renewable resources
and technological progress,” Environmental and Resource
Economics, vol. 30, no. 1, pp. 115–125, 2005.

[27] D. Meadows and J. Randers, The limits to growth: the 30-year
update. Routledge, 2012.

[28] M. Ben-Eli, “The cybernetics of sustainability: definition
and underlying principles,” Enough for All forever: A Hand-
book for Learning about Sustainability, Murray J, Cawthorne G,
Dey C and Andrew C (eds.). Champaign, IL, Common Ground
Publishing: University of Illinois, vol. 14, 2012.

[29] N. P. Bhatia and G. P. Szegö, Stability theory of dynamical
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